ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the Molecular Gas in NGC 6240

244   0   0.0 ( 0 )
 نشر من قبل Richard Tunnard
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first observations of H$^{13}$CN$(1-0)$, H$^{13}$CO$^+(1-0)$ and SiO$(2-1)$ in NGC,6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling, and with additional data from the literature, we simultaneously fit three gas phases and six molecular species to constrain the physical condition of the molecular gas, including mass$-$luminosity conversion factors. We find $sim10^{10}M_odot$ of dense molecular gas in cold, dense clouds ($T_{rm k}sim10$,K, $n_{{rm H}_2}sim10^6$,cm$^{-3}$) with a volume filling factor $<0.002$, embedded in a shock heated molecular medium ($T_{rm k}sim2000$,K, $n_{{rm H}_2}sim10^{3.6}$,cm$^{-3}$), both surrounded by an extended diffuse phase ($T_{rm k}sim200$,K, $n_{{rm H}_2}sim10^{2.5}$,cm$^{-3}$). We derive a global $alpha_{rm CO}=1.5^{7.1}_{1.1}$ with gas masses $log_{10}left(M / [M_odot]right)=10.1_{10.0}^{10.8}$, dominated by the dense gas. We also find $alpha_{rm HCN} = 32^{89}_{13}$, which traces the cold, dense gas. The [$^{12}$C]/[$^{13}$C] ratio is only slightly elevated ($98^{230}_{65}$), contrary to the very high [CO]/[$^{13}$CO] ratio (300-500) reported in the literature. However, we find very high [HCN]/[H$^{13}$CN] and [HCO$^+$]/[H$^{13}$CO$^+$] abundance ratios $(300^{500}_{200})$ which we attribute to isotope fractionation in the cold, dense clouds.



قيم البحث

اقرأ أيضاً

108 - E. Treister 2020
We present the highest resolution --- 15 pc (0.03) --- ALMA $^{12}$CO(2-1) line emission and 1.3mm continuum maps, tracers of the molecular gas and dust, respectively, in the nearby merging galaxy system NGC 6240, that hosts two supermassive black ho les growing simultaneously. These observations provide an excellent spatial match to existing Hubble optical and near-infrared observations of this system. A significant molecular gas mass, $sim$9$times$10$^9$M$_odot$, is located in between the two nuclei, forming a clumpy stream kinematically dominated by turbulence, rather than a smooth rotating disk as previously assumed from lower resolution data. Evidence for rotation is seen in the gas surrounding the southern nucleus, but not in the northern one. Dynamical shells can be seen, likely associated with nuclear supernovae remnants. We further detect the presence of significant high velocity outflows, some of them reaching velocities $>$500 km/s, affecting a significant fraction, $sim$11% of the molecular gas in the nuclear region. Inside the spheres of influence of the northern and southern supermassive black holes we find molecular masses of 7.4$times$10$^8$M$_odot$ and 3.3$times$10$^9$M$_odot$, respectively. We are thus directly imaging the reservoir of gas that can accrete onto each supermassive black hole. These new ALMA maps highlight the critical need for high resolution observations of molecular gas in order to understand the feeding of supermassive black holes and its connection to galaxy evolution in the context of a major galaxy merger.
Aims. We present new IRAM Plateau de Bure Interferometer observations of Arp 220 in HCN, HCO$^{+}$, HN$^{13}$C J=1-0, C$_{2}$H N=1-0, SiO J = 2-1, HNCO J$_{k,k}$ = 5$_{0,4}$ - 4$_{0,4}$, CH$_{3}$CN(6-5), CS J=2-1 and 5-4 and $^{13}$CO J=1-0 and 2-1 a nd of NGC 6240 in HCN, HCO$^{+}$ J = 1-0 and C$_{2}$H N = 1-0. In addition, we present Atacama Large Millimeter/submillmeter Array science verification observations of Arp 220 in CS J = 4-3 and CH$_{3}$CN(10-9). Various lines are used to analyse the physical conditions of the molecular gas including the [$^{12}$CO]/[$^{13}$CO] and [$^{12}$CO]/[C$^{18}$O] abundance ratios. These observations will be made available to the public. Methods. We create brightness temperature line ratio maps to present the different physical conditions across Arp 220 and NGC 6240. In addition, we use the radiative transfer code RADEX and a Monte Carlo Markov Chain likelihood code to model the $^{12}$CO, $^{13}$CO and C$^{18}$O lines of Arp 220 at ~2 (~700 pc) scales, where the $^{12}$CO and C$^{18}$O measurements were obtained from literature. Results. Line ratios of optically thick lines such as $^{12}$CO show smoothly varying ratios while the line ratios of optically thin lines such as $^{13}$CO show a east-west gradient across Arp 220. The HCN/HCO$^{+}$ line ratio differs between Arp 220 and NGC 6240, where Arp 220 has line ratios above 2 and NGC 6240 below 1. The radiative transfer analysis solution is consistent with a warm (~40 K), moderately dense (~10$^{3.4}$ cm$^{-3}$) molecular gas component averaged over the two nuclei. We find [$^{12}$CO]/[$^{13}$CO] and [$^{12}$CO]/[C$^{18}$O] abundance ratios of ~90 for both. The abundance enhancement of C$^{18}$O can be explained by stellar nucleosynthesis enrichment of the interstellar medium.
82 - T. Saito , D. Iono , J. Ueda 2017
We present 0.97 $times$ 0.53 (470 pc $times$ 250 pc) resolution CO ($J$ = 2-1) observations toward the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the ce ntral 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes ($sim$11 kpc). We found that the CO emission around the central a few kpc has extremely broad velocity wings with full width at zero intensity $sim$ 2000 km s$^{-1}$, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO datacube. The distribution of the broad CO components show four extremely large linewidth regions ($sim$1000 km s$^{-1}$) located 1-2 kpc away from both nuclei. Spatial coincidence of the large linewidth regions with H$alpha$, near-IR H$_2$, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.
Dynamical black hole mass measurements in some gas-rich galaxy mergers indicate that they are overmassive relative to their host galaxy properties. Overmassive black holes in these systems present a conflict with the standard progression of galaxy me rger - quasar evolution; an alternative explanation is that a nuclear concentration of molecular gas driven inward by the merger is affecting these dynamical black hole mass estimates. We test for the presence of such gas near the two black holes in NGC 6240 using long-baseline ALMA Band 6 observations (beam size 006 $times$ 003 or 30 pc$times$15 pc). We find (4.2-9.8) $times10^{7}$ M$_{odot}$ and (1.2-7.7) $times10^{8}$ M$_{odot}$ of molecular gas within the resolution limit of the original black hole mass measurements for the north and south black holes, respectively. In the south nucleus, this measurement implies that 6-89% of the original black hole mass measurement actually comes from molecular gas, resolving the tension in the original black hole scaling relations. For the north, only 5% to 11% is coming from molecular gas, suggesting the north black hole is actually overmassive. Our analysis provides the first measurement of significant molecular gas masses contaminating dynamical black hole mass measurements. These high central molecular gas densities further present a challenge to theoretical black hole accretion prescriptions, which often assume accretion proceeds rapidly through the central 10 pc.
We used the SPIRE/FTS instrument aboard the Herschel Space Observatory (HSO) to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J=4-3 to J=13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular lin e survey of local Luminous Infrared Galaxies (LIRGs: L_{IR}>=10^{11} L_{sol}). The high-J CO SLEDs are then combined with ground-based low-J CO, {13}CO, HCN, HCO+, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging from J=4-3 onwards, with NGC6240 having a much higher CO line excitation than Arp193, despite their similar low-J CO SLEDs and L_{FIR}/L_{CO,1-0}, L_{HCN}/L_{CO} (J=1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp193, one of the three most extreme starbursts in the local Universe, the molecular SLEDs indicate a small amount ~(5-15)% of dense gas (n>=10^{4}cm^{-3}) unlike NGC6240 where most of the molecular gas (~(60-70)%) is dense n~(10^4-10^5)cm^{-3}. Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas.In NGC6240, and to a lesser degree in Arp193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon Dominated Regions (PDRs). We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar IMF averaged over galactic evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا