ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of 2D Doppler backscattering on MAST

501   0   0.0 ( 0 )
 نشر من قبل David Thomas
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.



قيم البحث

اقرأ أيضاً

The high-k ($7 lesssim k_{bot} rho_i lesssim 11$) wavenumber spectrum of density fluctuations has been measured for the first time in MAST [B. Lloyd et al, Nucl. Fusion 43, 1665 (2003)]. This was accomplished with the first implementation of Doppler backscattering (DBS) for core measurements in a spherical tokamak. DBS has become a well-established and versatile diagnostic technique for the measurement of intermediate-k ($k_{bot} rho_i sim 1$, and higher) density fluctuations and flows in magnetically confined fusion experiments. A novel implementation with 2D steering was necessary to enable DBS measurements in MAST, where the large magnetic field pitch angle presents a challenge. We report on the scattering considerations and ray tracing calculations used to optimize the design and present data demonstrating measurement capabilities. Initial results confirm the applicability of the design and implementation approaches, showing the strong dependence of scattering alignment on toroidal launch angle. We also present comparisons of DBS plasma velocity measurements with charge exchange recombination and beam emission spectroscopy measurements, which show reasonable agreement over most of the minor radius, but imply large poloidal flows approaching the magnetic axis in a discharge with an internal transport barrier. The 2D steering is shown to enable high-k measurements with DBS, at $k_{bot}>20 mathrm{cm}^{-1}$ ($k_{bot} rho_i>10$) for launch frequencies less than 75 GHz; this capability is used to measure the wavenumber spectrum of turbulence and we find $|n(k_{bot})|^2 propto k_{bot}^{- 4.7 pm 0.2}$ for $k_{bot} rho_i approx 7-11$, which is similar to the expectation for the turbulent kinetic cascade of $|n(k_{bot})|^2 propto k_{bot}^{- 13/3}$.
The Beam Emission Spectroscopy (BES) turbulence diagnostic on MAST is to be upgraded in June 2010 from a 1D trial system to a 2D imaging system (8 radial times 4 poloidal channels) based on a newly developed APD array camera. The spatial resolution o f the new system is calculated in terms of the point spread function (PSF) to account for the effects of field-line curvature, observation geometry, the finite lifetime of the excited state of the beam atoms, and beam attenuation and divergence. It is found that the radial spatial resolution is ~ 2-3 cm and the poloidal spatial resolution ~ 1-5 cm depending on the radial viewing location. The absolute number of detected photons is also calculated, hence the photon noise level can be determined
Tokamak plasmas rotate even without external injection of momentum. A Doppler backscattering system installed at MAST has allowed this intrinsic rotation to be studied in Ohmic L-mode and H-mode plasmas, including the first observation of intrinsic r otation reversals in a spherical tokamak. Experimental results are compared to a novel 1D model, which captures the collisionality dependence of the radial transport of toroidal angular momentum due to the effect of neoclassical flows on turbulent fluctuations. The model is able to accurately reproduce the change in sign of core toroidal rotation, using experimental density and temperature profiles from shots with rotation reversals as inputs and no free parameters fit to experimental data.
156 - R. Scannell , A. Kirk , M. Carr 2014
The impact of resonant magnetic perturbations (RMPs) on the power required to access H-mode is examined experimentally on MAST. Applying RMP in n=2,3,4 and 6 configurations causes significant delays to the timing of the L-H transition at low applied fields and prevents the transition at high fields. The experiment was primarily performed at RMP fields sufficient to cause moderate increases in ELM frequency, f mitigated/f natural~3. To obtain H-mode with RMPs at this field, an increase of injected beam power is required of at least 50% for n=3 and n=4 RMP and 100% for n=6 RMP. In terms of power threshold, this corresponds to increases of at least 20% for n=3 and n=4 RMPs and 60% for n=6 RMPs. This RMP affected power threshold is found to increase with RMP magnitude above a certain minimum perturbed field, below which there is no impact on the power threshold. Extrapolations from these results indicate large increases in the L-H power threshold will be required for discharges requiring large mitigated ELM frequency.
Sustained ELM mitigation has been achieved using RMPs with a toroidal mode number of n=4 and n=6 in lower single null and with n=3 in connected double null plasmas on MAST. The ELM frequency increases by up to a factor of eight with a similar reducti on in ELM energy loss. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. A comparison of the filament structures observed during the ELMs in the natural and mitigated stages shows that the mitigated ELMs have the characteristics of type I ELMs even though their frequency is higher, their energy loss is reduced and the pedestal pressure gradient is decreased. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. The size of these lobes is correlated with the increase in ELM frequency observed. The RMPs produce a clear 3D distortion to the plasma and it is likely that these distortions explain why ELMs are destabilised and hence why ELM mitigation occurs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا