ﻻ يوجد ملخص باللغة العربية
The emergence and magnetic evolution of solar active regions (ARs) of beta-gamma-delta type, which are known to be highly flare-productive, were studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be observed from their birth phase, as unbiased samples for our study. From the analysis of the magnetic topology (twist and writhe), we obtained the following results. i) Emerging beta-gamma-delta ARs can be classified into three topological types as quasi-beta, writhed and top-to-top. ii) Among them, the writhed and top-to-top types tend to show high flare activity. iii) As the signs of twist and writhe agree with each other in most cases of the writhed type (12 cases out of 13), we propose a magnetic model in which the emerging flux regions in a beta-gamma-delta AR are not separated but united as a single structure below the solar surface. iv) Almost all the writhed-type ARs have downward knotted structures in the mid portion of the magnetic flux tube. This, we believe, is the essential property of beta-gamma-delta ARs. v) The flare activity of beta-gamma-delta ARs is highly correlated not only with the sunspot area but also with the magnetic complexity. vi) We suggest that there is a possible scaling-law between the flare index and the maximum umbral area.
The data of sunspot numbers, sunspot areas and solar flare index during cycle 23 are analyzed to investigate the intermediate-term periodicities. Power spectral analysis has been performed separately for the data of the whole disk, northern and south
The morphological asymmetry of leading and following sunspots is a well-known characteristic of the solar surface. In the context of large-scale evolution of the surface magnetic field, the asymmetry has been assumed to have only a negligible effect.
Solar active regions (ARs) that produce strong flares and coronal mass ejections (CMEs) are known to have a relatively high non-potentiality and are characterized by delta-sunspots and sheared magnetic structures. In this study, we conduct a series o
We analyze the light curve of 1740 flare stars to study the relationship between the magnetic feature characteristics and the identified flare activity. Coverage and stability of magnetic features are inspired by rotational modulation of light curve
We explore the link between solar energetic particles (SEPs) observed at 1 AU and large-scale disturbances propagating in the solar corona, named after the Extreme ultraviolet Imaging Telescope (EIT) as EIT waves, which trace the lateral expansion of