ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution and Flare Activity of Delta-Sunspots in Cycle 23

346   0   0.0 ( 0 )
 نشر من قبل Kan Takizawa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence and magnetic evolution of solar active regions (ARs) of beta-gamma-delta type, which are known to be highly flare-productive, were studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be observed from their birth phase, as unbiased samples for our study. From the analysis of the magnetic topology (twist and writhe), we obtained the following results. i) Emerging beta-gamma-delta ARs can be classified into three topological types as quasi-beta, writhed and top-to-top. ii) Among them, the writhed and top-to-top types tend to show high flare activity. iii) As the signs of twist and writhe agree with each other in most cases of the writhed type (12 cases out of 13), we propose a magnetic model in which the emerging flux regions in a beta-gamma-delta AR are not separated but united as a single structure below the solar surface. iv) Almost all the writhed-type ARs have downward knotted structures in the mid portion of the magnetic flux tube. This, we believe, is the essential property of beta-gamma-delta ARs. v) The flare activity of beta-gamma-delta ARs is highly correlated not only with the sunspot area but also with the magnetic complexity. vi) We suggest that there is a possible scaling-law between the flare index and the maximum umbral area.



قيم البحث

اقرأ أيضاً

124 - Bhuwan Joshi , P. Pant , 2009
The data of sunspot numbers, sunspot areas and solar flare index during cycle 23 are analyzed to investigate the intermediate-term periodicities. Power spectral analysis has been performed separately for the data of the whole disk, northern and south ern hemispheres of the Sun. Several significant midrange periodicities ($sim$175, 133, 113, 104, 84, 63 days) are detected in sunspot activity. Most of the periodicities in sunspot numbers generally agree with those of sunspot areas during the solar cycle 23. The study reveals that the periodic variations in the northern and southern hemispheres of the Sun show a kind of asymmetrical behavior. Periodicities of $sim$175 days and $sim$133 days are highly significant in the sunspot data of northern hemisphere showing consistency with the findings of Lean (1990) during solar cycles 12-21. On the other hand, southern hemisphere shows a strong periodicity of about 85 days in terms of sunspot activity. The analysis of solar flare index data of the same time interval does not show any significant peak. The different periodic behavior of sunspot and flare activity can be understood in the light of hypothesis proposed by Ballester et al. (2002), which suggests that during cycle 23, the periodic emergence of magnetic flux partly takes place away from developed sunspot groups and hence may not necessarily increase the magnetic complexity of sunspot groups that leads to the generation of flares.
153 - H. Iijima , H. Hotta , S. Imada 2019
The morphological asymmetry of leading and following sunspots is a well-known characteristic of the solar surface. In the context of large-scale evolution of the surface magnetic field, the asymmetry has been assumed to have only a negligible effect. Using the surface flux transport model, we show that the morphological asymmetry of leading and following sunspots has a significant impact on the evolution of the large-scale magnetic field on the solar surface. By evaluating the effect of the morphological asymmetry of each bipolar magnetic region (BMR), we observe that the introduction of the asymmetry in the BMR model significantly reduces its contribution to the polar magnetic field, especially for large and high-latitude BMRs. Strongly asymmetric BMRs can even reverse the regular polar field formation. The surface flux transport simulations based on the observed sunspot record shows that the introduction of the morphological asymmetry reduces the root-mean-square difference from the observed axial dipole strength by 30--40 percent. These results indicate that the morphological asymmetry of leading and following sunspots has a significant effect on the solar cycle prediction.
Solar active regions (ARs) that produce strong flares and coronal mass ejections (CMEs) are known to have a relatively high non-potentiality and are characterized by delta-sunspots and sheared magnetic structures. In this study, we conduct a series o f flux emergence simulations from the convection zone to the corona and model four types of active regions that have been observationally suggested to cause strong flares, namely the Spot-Spot, Spot-Satellite, Quadrupole, and Inter-AR cases. As a result, we confirm that delta-spot formation is due to the complex geometry and interaction of emerging magnetic fields, with finding that the strong-field, high-gradient, highly-sheared polarity inversion line (PIL) is created by the combined effect of the advection, stretching, and compression of magnetic fields. We show that free magnetic energy builds up in the form of a current sheet above the PIL. It is also revealed that photospheric magnetic parameters that predict flare eruptions reflect the stored free energy with high accuracy, while CME-predicting parameters indicate the magnetic relationship between flaring zones and entire ARs.
We analyze the light curve of 1740 flare stars to study the relationship between the magnetic feature characteristics and the identified flare activity. Coverage and stability of magnetic features are inspired by rotational modulation of light curve variations and flare activity of stars are obtained using our automated flare detection algorithm. The results show that (i) Flare time occupation ratio (or flare frequency) and total power of flares increase by increasing relative magnetic feature coverage and contrast in F-M type stars (ii) Magnetic feature stability is highly correlated with the coverage and the contrast of the magnetic structures as this is the case for the Sun (iii) Stability, coverage and contrast of the magnetic features, time occupation ratio and total power of flares increases for G, K and M-type stars by decreasing Rossby number due to the excess of produced magnetic field from dynamo procedure until reaching to saturation level.
We explore the link between solar energetic particles (SEPs) observed at 1 AU and large-scale disturbances propagating in the solar corona, named after the Extreme ultraviolet Imaging Telescope (EIT) as EIT waves, which trace the lateral expansion of a coronal mass ejection (CME). A comprehensive search for SOHO/EIT waves was carried out for 179 SEP events during Solar Cycle 23 (1997-2006). 87% of the SEP events were found to be accompanied by EIT waves. In order to test if the EIT waves play a role in the SEP acceleration, we compared their extrapolated arrival time at the footpoint of the Parker spiral with the particle onset in the 26 eastern SEP events that had no direct magnetic connection to the Earth. We find that the onset of proton events was generally consistent with this scenario. However, in a number of cases the first near-relativistic electrons were detected too early. Furthermore, the electrons had in general only weakly anisotropic pitch-angle distributions. This poses a problem for the idea that the SEPs were accelerated by the EIT wave or in any other spatially confined region in the low corona. The presence of weak electron anisotropies in SEP events from the eastern hemisphere suggests that transport processes in interplanetary space, including cross-field diffusion, play a role in giving the SEPs access to a broad range of helio-longitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا