ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Simulation of the Hubbard Model with Dopant Atoms in Silicon

105   0   0.0 ( 0 )
 نشر من قبل Joe Salfi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose-Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasiparticle tunneling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing covalent bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model.

قيم البحث

اقرأ أيضاً

Interacting fermions on a lattice can develop strong quantum correlations, which lie at the heart of the classical intractability of many exotic phases of matter. Seminal efforts are underway in the control of artificial quantum systems, that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical pure-state initialisation and readily adhere to an engineerable Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder inherent to solid state has made attempts at emulating Fermi-Hubbard physics on solid-state platforms few and far between. Here, we show that for gate-defined quantum dots, this disorder can be suppressed in a controlled manner. Novel insights and a newly developed semi-automated and scalable toolbox allow us to homogeneously and independently dial in the electron filling and nearest-neighbour tunnel coupling. Bringing these ideas and tools to fruition, we realize the first detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here show how quantum dots can be used to investigate the physics of ever more complex many-body states.
The downscaling of silicon-based structures and proto-devices has now reached the single atom scale, representing an important milestone for the development of a silicon-based quantum computer. One especially notable platform for atomic scale device fabrication is the so-called SiP delta-layer, consisting of an ultra dense and sharp layer of dopants within a semiconductor host. Whilst several alternatives exist, phosphorus dopants in silicon have drawn the most interest, and it is on this platform that many quantum proto-devices have been successfully demonstrated. Motivated by this, both calculations and experiments have been dedicated to understanding the electronic structure of the SiP delta-layer platform. In this work, we use high resolution angle-resolved photoemission spectroscopy (ARPES) to reveal the structure of the electronic states which exist because of the high dopant density of the SiP delta-layer. In contrast to published theoretical work, we resolve three distinct bands, the most occupied of which shows a large anisotropy and significant deviation from simple parabolic behaviour. We investigate the possible origins of this fine structure, and conclude that it is primarily a consequence of the dielectric constant being large (ca. double that of bulk Si). Incorporating this factor into tight binding calculations leads to a major revision of band structure; specifically, the existence of a third band, the separation of the bands, and the departure from purely parabolic behaviour. This new understanding of the bandstructure has important implications for quantum proto-devices which are built on the SiP delta-layer platform.
The precise positioning of dopant atoms within bulk crystal lattices could enable novel applications in areas including solid-state sensing and quantum computation. Established scanning probe techniques are capable tools for the manipulation of surfa ce atoms, but at a disadvantage due to their need to bring a physical tip into contact with the sample. This has prompted interest in electron-beam techniques, followed by the first proof-of-principle experiment of bismuth dopant manipulation in crystalline silicon. Here, we use first principles modeling to discover a novel indirect exchange mechanism that allows electron impacts to non-destructively move dopants with atomic precision within the silicon lattice. However, this mechanism only works for the two heaviest group V donors with split-vacancy configurations, Bi and Sb. We verify our model by directly imaging these configurations for Bi, and by demonstrating that the promising nuclear spin qubit Sb can be manipulated using a focused electron beam.
We report on spectroscopy of a single dopant atom in silicon by resonant tunneling between source and drain of a gated nanowire etched from silicon on insulator. The electronic states of this dopant isolated in the channel appear as resonances in the low temperature conductance at energies below the conduction band edge. We observe the two possible charge states successively occupied by spin-up and spin-down electrons under magnetic field. The first resonance is consistent with the binding energy of the neutral $D^0$ state of an arsenic donor. The second resonance shows a reduced charging energy due to the electrostatic coupling of the charged $D^-$ state with electrodes. Excited states and Zeeman splitting under magnetic field present large energies potentially useful to build atomic scale devices.
Two-level quantum systems with strong spin-orbit coupling allow for all-electrical qubit control and long-distance qubit coupling via microwave and phonon cavities, making them of particular interest for scalable quantum information technologies. In silicon, a strong spin-orbit coupling exists within the spin-3/2 system of acceptor atoms and their energy levels and properties are expected to be highly tunable. Here we show the influence of local symmetry tuning on the acceptor spin-dynamics, measured in the single-atom regime. Spin-selective tunneling between two coupled boron atoms in a commercial CMOS transistor is utilised for spin-readout, which allows for the probing of the two-hole spin relaxation mechanisms. A relaxation-hotspot is measured and explained by the mixing of acceptor heavy and light hole states. Furthermore, excited state spectroscopy indicates a magnetic field controlled rotation of the quantization axes of the atoms. These observations demonstrate the tunability of the spin-orbit states and dynamics of this spin-3/2 system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا