ﻻ يوجد ملخص باللغة العربية
The ratio of the Zeeman splitting to the cyclotron energy ($M=Delta E_{rm Z}/hbar omega_{rm c}$) for hole-like carriers in bismuth has been quantified with a great precision by many experiments performed during the past five decades. It exceeds 2 when the magnetic field is along the trigonal axis and vanishes in the perpendicular configuration. Theoretically, however, $M$ is expected to be isotropic and equal to unity in a two-band Dirac model. We argue that a solution to this half-a-century-old puzzle can be found by extending the $kcdot p$ theory to multiple bands. Our model not only gives a quantitative account of magnitude and anisotropy of $M$ for hole-like carriers in bismuth, but also explains its contrasting evolution with antimony doping pressure, both probed by new experiments reported here. The present results have important implications for the magnitude and anisotropy of $M$ in other systems with strong spin-orbit coupling.
We present a systematical study of thermal Hall effect on a bismuth single crystal by measuring resistivity, Hall coefficient, and thermal conductivity under magnetic field, which shows a large thermal Hall coefficient comparable to the largest one i
Bi2Se3 is a topological insulator with metallic surface states residing in a large bulk bandgap. It is believed that Bi2Se3 gets additional n-type doping after exposure to atmosphere, thereby reducing the relative contribution of surface states in to
While recent advances in band theory and sample growth have expanded the series of extremely large magnetoresistance (XMR) semimetals in transition metal dipnictides $TmPn_2$ ($Tm$ = Ta, Nb; $Pn$ = P, As, Sb), the experimental study on their electron
Hybrid nanocrystals (HNCs), based on ZnO nanorods (NRs) decorated with magnetic Fe-based domains, were synthesized via a colloidal seeded-growth method. The approach involved heterogeneous nucleation of Fe nanocrystals on size-tailored ZnO nanorod se
The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface state