ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-wavelength constraints on cosmic-ray leptons in the Galaxy

220   0   0.0 ( 0 )
 نشر من قبل Elena Orlando Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic rays (CRs) interact with the gas, the radiation field and the magnetic field in the Milky Way, producing diffuse emission from radio to gamma rays. Observations of this diffuse emission and comparison with detailed predictions are powerful tools to unveil the CR properties and to study CR propagation. We present various GALPROP CR propagation scenarios based on current CR measurements. The predicted synchrotron emission is compared to radio surveys, and synchrotron temperature maps from WMAP and Planck, while the predicted interstellar gamma-ray emission is compared to Fermi-LAT observations. We show how multi-wavelength observations of the Galactic diffuse emission can be used to help constrain the CR lepton spectrum and propagation. Finally we discuss how radio and microwave data could be used in understanding the diffuse Galactic gamma-ray emission observed with Fermi-LAT, especially at low energies.

قيم البحث

اقرأ أيضاً

Several young supernova remnants (SNRs) have recently been detected in the high-energy and very-high-energy gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficien t acceleration of cosmic-ray protons at the SNR shocks still remains elusive. We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the derived HE upper limits together with the HESS measurements in the VHE domain can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. The interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15-25 muG. For these two scenarios, we assessed the level of acceleration efficiency. We discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.
67 - R. Middei , S. Bianchi , M. Cappi 2018
We conducted a multi-wavelength six-month campaign to observe the Seyfert galaxy NGC~7469, using the space-based observatories textit{HST}, textit{Swift}, textit{XMM-Newton} and textit{NuSTAR}. Here we report the results of the spectral analysis of t he 7 simultaneous textit{XMM-Newton} and textit{NuSTAR} observations. The sources shows significant flux variability within each observation, but the average flux is less variable among the different pointings of our campaign. Our spectral analysis reveals a prominent narrow neutral ion{Fe} K$alpha$ emission line in all the spectra, with weaker contributions from Fe K$beta$, neutral Ni K$alpha$ and ionised iron. We find no evidence for variability or relativistic effects acting on the emission lines, which indicates that they originate from distant material. Analysing jointly textit{XMM-Newton} and textit{NuSTAR} data a constant photon index is found ($Gamma$=$1.78pm0.02$), together with a high energy cut-off $E_{rm{cut}}=170^{+60}_{-40}$ keV. Adopting a self-consistent Comptonization model, these values correspond to an average coronal electron temperature of kT=$45^{+15}_{-12}$ keV and, assuming a spherical geometry, an optical depth $tau=2.6pm0.9$. The reflection component is consistent with being constant, with a reflection fraction in the range $R=0.3-0.6$. A prominent soft excess dominates the spectra below 4 keV. This is best fit with a second Comptonization component, arising from a virg{warm corona} with an average $kT=0.67pm0.03$ keV and a corresponding optical depth $tau=9.2pm0.2$.
In the Milky Way, cosmic rays (CRs) are dynamically important in the interstellar medium, contribute to hydrostatic balance, and may help regulate star formation. However, we know far less about the importance of CRs in galaxies whose gas content or star formation rate differ significantly from those of the Milky Way. Here we construct self-consistent models for hadronic CR transport, losses, and contribution to pressure balance as a function of galaxy properties, covering a broad range of parameters from dwarfs to extreme starbursts. While the CR energy density increases from $sim 1$ eV cm$^{-3}$ to $sim 1$ keV cm$^{-3}$ over the range from sub-Milky Way dwarfs to bright starbursts, strong hadronic losses render CRs increasingly unimportant dynamically as the star formation rate surface density increases. In Milky Way-like systems, CR pressure is typically comparable to turbulent gas and magnetic pressure at the galactic midplane, but the ratio of CR pressure to gas pressure drops to $sim 10^{-3}$ in dense starbursts. Galaxies also become increasingly CR calorimetric and gamma-ray bright in this limit. The degree of calorimetry at fixed galaxy properties is sensitive to the assumed model for CR transport, and in particular to the time CRs spend interacting with neutral ISM, where they undergo strong streaming losses. We also find that in some regimes of parameter space hydrostatic equilibrium discs cannot exist, and in Paper II of this series we use this result to derive a critical surface in the plane of star formation surface density and gas surface density beyond which CRs may drive large-scale galactic winds.
106 - M. L. Ahnen 2017
The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. We report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10 deg - 20 deg. The multi-instrument campaign was conducted between 2012 Nov. and 2013 Jan., and involved observations with MAGIC, Fermi, INTEGRAL, Swift, OVRO, MOJAVE and EVN. These observations were complemented with archival data from the AllWISE and 2MASS catalogs. A one-zone synchrotron self-Compton model was applied to describe the broad-band spectral energy distribution. IC 310 showed an extraordinary TeV flare at the beginning of the campaign, followed by a low, but still detectable TeV flux. Compared to previous measurements, the spectral shape was found to be steeper during the low emission state. Simultaneous observations in the soft X-ray band showed an enhanced energy flux state and a harder-when-brighter spectral shape behaviour. No strong correlated flux variability was found in other frequency regimes. The broad-band spectral energy distribution obtained from these observations supports the hypothesis of a double-hump structure. The harder-when-brighter trend in the X-ray and VHE emission is consistent with the behaviour expected from a synchrotron self-Compton scenario. The contemporaneous broad-band spectral energy distribution is well described with a one-zone synchrotron self-Compton model using parameters that are comparable to those found for other gamma-ray-emitting misaligned blazars.
We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-$Lstar$ starburst, and $Lstar$ gala xies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of $gamma$-ray emission from nearby and starburst galaxies. We reproduce the $gamma$-ray observations of dwarf and $Lstar$ galaxies with constant isotropic diffusion coefficient $kappa sim 3times 10^{29},{rm cm^{2},s^{-1}}$. Advection-only and streaming-only models produce order-of-magnitude too large $gamma$-ray luminosities in dwarf and $Lstar$ galaxies. We show that in models that match the $gamma$-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for $gamma$-ray emissivities. Models where CRs are ``trapped in the star-forming disk have lower star formation efficiency, but these models are ruled out by $gamma$-ray observations. For models with constant $kappa$ that match the $gamma$-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا