ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-dependent phase shift of a retrieved pulse in off-resonant EIT-based light storage

185   0   0.0 ( 0 )
 نشر من قبل Etienne Brion
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in EIT storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-photon resonance, and provide numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the experimental results.



قيم البحث

اقرأ أيضاً

Electromagnetically induced transparency (EIT) in metastable helium at room temperature is experimentally shown to exhibit light storage capabilities for intermediate values of the detuning between the coupling and probe beams and the center of the a tomic Doppler profiles. An additional phase shift is shown to be imposed to the retrieved pulse of light when the EIT protocol is performed at non-zero optical detunings. The value of this phase shift is measured for different optical detunings between 0 and 2 GHz, and its origin is discussed.
Neutral atom array serves as an ideal platform to study the quantum logic gates, where intense efforts have been devoted to improve the two-qubit gate fidelity. We report our recent findings in constructing a different type of two-qubit controlled-PH ASE quantum gate protocol with neutral atoms enabled by Rydberg blockade, which aims at both robustness and high-fidelity. It relies upon modulated driving pulse with specially tailored smooth waveform to gain appropriate phase accumulations for quantum gates. The major features include finishing gate operation within a single pulse, not necessarily requiring individual site addressing, not sensitive to the exact value of blockade shift while suppressing population leakage error and rotation error. We anticipate its fidelity to be reasonably high under realistic considerations for errors such as atomic motion, laser power fluctuation, power imbalance, spontaneous emission and so on. Moreover, we hope that such type of protocol may inspire future improvements in quantum gate designs for other categories of qubit platforms and new applications in other areas of quantum optimal control.
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent f ield which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than 35 dB of switching contrast with less than 0.1 dB loss using just 2 micro-Watts of control-beam power for signal beams with less than single photon intensities inside the cavity.
We theoretically investigate a double-{Lambda} electromagnetically induced transparency (EIT) system. The property of the double-{Lambda} medium with a closed-loop configuration depends on the relative phase of the applied laser fields. This phase-de pendent mechanism differentiates the double-{Lambda} medium from the conventional Kerr-based nonlinear medium, e.g., EIT-based nonlinear medium discussed by Harris and Hau [Phys. Rev. Lett. 82, 4611 (1999)], which depends only on the intensities of the applied laser fields. Steady-state analytical solutions for the phase-dependent system are obtained by solving the Maxwell-Bloch equations. In addition, we discuss efficient all-optical phase modulation and coherent light amplification based on the proposed double-{Lambda} EIT scheme.
We analyze the multipole excitation of atoms with twisted light, i.e., by a vortex light field that carries orbital angular momentum. A single trapped $^{40}$Ca$^+$ ion serves as a localized and positioned probe of the exciting field. We drive the $S _{1/2} to D_{5/2}$ transition and observe the relative strengths of different transitions, depending on the ions transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Gauss-Laguerre mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a level of better than 3%. Finally, we propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes in future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا