ترغب بنشر مسار تعليمي؟ اضغط هنا

The uniformization of the moduli space of principally polarized abelian 6-folds

61   0   0.0 ( 0 )
 نشر من قبل Gavril Farkas
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from a beautiful idea of Kanev, we construct a uniformization of the moduli space A_6 of principally polarized abelian 6-folds in terms of curves and monodromy data. We show that the general ppav of dimension 6 is a Prym-Tyurin variety corresponding to a degree 27 cover of the projective line having monodromy the Weyl group of the E_6 lattice. Along the way, we establish numerous facts concerning the geometry of the Hurwitz space of such E_6-covers, including: (1) a proof that the canonical class of the Hurwitz space is big, (2) a concrete geometric description of the Hodge-Hurwitz eigenbundles with respect to the Kanev correspondence and (3) a description of the ramification divisor of the Prym-Tyurin map from the Hurwitz space to A_6 in the terms of syzygies of the Abel-Prym-Tyurin curve.

قيم البحث

اقرأ أيضاً

We give a characterizaton of smooth ample Hypersurfaces in Abelian Varieties and also describe an irreducible connected component of their moduli space: it consists of the Hypersurfaces of a given polarization type, plus the iterated univariate cover ings of normal type (of the same polarization type). The above manifolds yield also a connected component of the open set of Teichmuller space consisting of Kahler complex structures.
We present an algorithm for explicitly computing the number of generators of the stable cohomology algebra of any rationally smooth partial toroidal compactification of ${mathcal A}_g$, satisfying certain additivity and finiteness properties, in term s of the combinatorics of the corresponding toric fans. In particular the algorithm determines the stable cohomology of the matroidal partial compactification, in terms of simple regular matroids that are irreducible with respect to the 1-sum operation, and their automorphism groups. The algorithm also applies to compute the stable Betti numbers in close to top degree for the perfect cone toroidal compactification. This suggests the existence of an algebra structure on the stable cohomology of the perfect cone compactification in close to top degree.
Building on an idea of Borcherds, Katzarkov, Pantev, and Shepherd-Barron (who treated the case $e=14$), we prove that the moduli space of polarized K3 surfaces of degree $2e$ contains complete curves for all $egeq 62$ and for some sporadic lower valu es of $e$ (starting at $14$). We also construct complete curves in the moduli spaces of polarized hyper-Kahler manifolds of $mathrm{K3}^{[n]}$-type or $mathrm{Kum}_n$-type for all $nge 1$ and polarizations of various degrees and divisibilities.
102 - Wensheng Cao 2017
Let $mathcal{M}(n,m;F bp^n)$ be the configuration space of $m$-tuples of pairwise distinct points in $F bp^n$, that is, the quotient of the set of $m$-tuples of pairwise distinct points in $F bp^n$ with respect to the diagonal action of ${rm PU}(1,n; F)$ equipped with the quotient topology. It is an important problem in hyperbolic geometry to parameterize $mathcal{M}(n,m;F bp^n)$ and study the geometric and topological structures on the associated parameter space. In this paper, by mainly using the rotation-normalized and block-normalized algorithms, we construct the parameter spaces of both $mathcal{M}(n,m; bhq)$ and $mathcal{M}(n,m;bp(V_+))$, respectively.
We construct a compactification of the moduli spaces of abelian differentials on Riemann surfaces with prescribed zeroes and poles. This compactification, called the moduli space of multi-scale differentials, is a complex orbifold with normal crossin g boundary. Locally, our compactification can be described as the normalization of an explicit blowup of the incidence variety compactification, which was defined in [BCGGM18] as the closure of the stratum of abelian differentials in the closure of the Hodge bundle. We also define families of projectivized multi-scale differentials, which gives a proper Deligne-Mumford stack, and our compactification is the orbifold corresponding to it. Moreover, we perform a real oriented blowup of the unprojectivized moduli space of multi-scale differentials such that the $mathrm{SL}_2(mathbb R)$-action in the interior of the moduli space extends continuously to the boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا