ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Rb 5P3/2 scalar and tensor polarizabilities in a 1064 nm light field

173   0   0.0 ( 0 )
 نشر من قبل Yun-Jhih Chen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We employ doubly-resonant two-photon excitation into the 74S Rydberg state to spectroscopically measure the dynamic scalar polarizability, alpha 0, and tensor polarizability, alpha 2, of rubidium 5P3/2. To reach the necessary high intensities, we employ a cavity-generated 1064 nm optical-lattice light field, allowing us to obtain intensities near 2x10^11 W/m^2. In the evaluation of the data we use a self-referencing method that renders the polarizability measurement largely free from the intensity calibration of the laser light field. We obtain experimental values alpha 0 =-1149 (pm 2.5 percent) and alpha 2 = 563 (pm 4.2 percent), in atomic units. Methods and results are supported by simulations.

قيم البحث

اقرأ أيضاً

98 - A. Perez Galvan 2008
We observe a hyperfine anomaly in the measurement of the hyperfine splitting of the 6S_{1/2} excited level in rubidium. We perform two step spectroscopy using the 5S_{1/2}->5P_{1/2}->6S_{1/2} excitation sequence. We measure the splitting of the 6S1/2 level and obtain for the magnetic dipole constants of ^{85}Rb and ^{87}Rb A = 239.18(4) MHz and A=807.66(8) MHz, respectively. The hyperfine anomaly difference of_{87}delta_{85}=-0.0036(2) comes from the Bohr Weisskopf effect: a correction to the point interaction between the finite nuclear magnetization and the electrons, and agrees with that obtained in the 5S_{1/2} ground state.
We report on the generation of a stable continuous-wave low-frequency squeezed vacuum field with a squeezing level of $3.8pm0.1$ dB at 1064 nm, the wavelength at which laser interferometers for gravitational wave (GW) detection operate, using periodi cally poled KTiOPO$_4$ (PPKTP) in a sub-threshold optical parametric oscillator. PPKTP has the advantages of higher nonlinearity, smaller intra-crystal and pump-induced seed absorption, user-specified parametric down-conversion temperature, wider temperature tuning range, and lower susceptibility to thermal lensing over alternative nonlinear materials such as MgO doped or periodically poled LiNbO$_3$, and is, therefore, an excellent material for generation of squeezed vacuum fields for application to laser interferometers for GW detection.
Using recent high-precision measurements of electric dipole matrix elements of atomic cesium, we make an improved determination of the scalar ($alpha$) and vector ($beta$) polarizabilities of the cesium $6s ^2S_{1/2} rightarrow 7s ^2S_{1/2} $ trans ition calculated through a sum-over-states method. We report values of $alpha = -268.82 (30) a_0^3$ and $beta = 27.139 (42) a_0^3$ with the highest precision to date. We find a discrepancy between our value of $beta$ and the past preferred value, resulting in a significant shift in the value of the weak charge $Q_w$ of the cesium nucleus. Future work to resolve the differences in the polarizability will be critical for interpretation of parity non-conservation measurements in cesium, which have implications for physics beyond the Standard Model.
We report the measurement of the photoionization cross sections of the 5S${}_{1/2}$ and 5P${}_{3/2}$ states of ${}^{87}$Rb in a two-species Hg and Rb magneto-optical trap (MOT) by the cooling laser for Hg. The photoionization cross sections of Rb in the 5S${}_{1/2}$ and 5P${}_{3/2}$ states at 253.7~nm are determined to be $1^{+4.3}_{-1}times10^{-20}~text{cm}^2$ and $4.63(30)times 10^{-18}text{cm}^2$, respectively. To measure the 5S${}_{1/2}$ and 5P${}_{3/2}$ states fractions in the MOT we detected photoionization rate of the 5P${}_{3/2}$ state by an additional 401.5~nm laser. The photoionization cross section of Rb in the 5P${}_{3/2}$ state at 401.5~nm is determined to be $text{1.18(10)}times10^{-17}~text{cm}^2$.
The structure of the excited $2^{3}$S and $2^{3}$P triplet states of $^{3}$He and $^{4}$He in an applied magnetic field B is studied using different approximations of the atomic Hamiltonian. All optical transitions (line positions and intensities) of the 1083 nm $2^{3}$S-$2^{3}$P transition are computed as a function of B. The effect of metastability exchange collisions between atoms in the ground state and in the $2^{3}$S metastable state is studied, and rate equations are derived, for the populations these states in the general case of an isotopic mixture in an arbitrary field B. It is shown that the usual spin-temperature description remains valid. A simple optical pumping model based on these rate equations is used to study the B-dependence of the population couplings which result from the exchange collisions. Simple spectroscopy measurements are performed using a single-frequency laser diode on the 1083 nm transition. The accuracy of frequency scans and of measurements of transition intensities is studied. Systematic experimental verifications are made for B=0 to 1.5 T. Optical pumping effects resulting from hyperfine decoupling in high field are observed to be in good agreement with the predictions of the simple model. Based on adequately chosen absorption measurements at 1083 nm, a general optical method to measure the nuclear polarisation of the atoms in the ground state in an arbitrary field is described. It is demonstrated at $Bsim$0.1 T, a field for which the usual optical methods could not operate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا