ﻻ يوجد ملخص باللغة العربية
The modified gravity is considered to be one of possible explanations of the accelerated expansions of the present and the early universe. We study effects of the modified gravity on big bang nucleosynthesis (BBN). If effects of the modified gravity are significant during the BBN epoch, they should be observed as changes of primordial light element abundances. We assume a $f(G)$ term with the Gauss-Bonnet term $G$, during the BBN epoch. A power-law relation of $df/dG propto t^p$ where $t$ is the cosmic time was assumed for the function $f(G)$ as an example case. We solve time evolutions of physical variables during BBN in the $f(G)$ gravity model numerically, and analyzed calculated results. It is found that a proper solution for the cosmic expansion rate can be lost in some parameter region. In addition, we show that calculated results of primordial light element abundances can be significantly different from observational data. Especially, observational limits on primordial D abundance leads to the strongest constraint on the $f(G)$ gravity. We then derive constraints on parameters of the $f(G)$ gravity taking into account the existence of the solution of expansion rate and final light element abundances.
Bimetric gravity is a ghost-free and observationally viable extension of general relativity, exhibiting both a massless and a massive graviton. The observed abundances of light elements can be used to constrain the expansion history of the Universe a
Big bang nucleosynthesis in a modified gravity model of $f(R)propto R^n$ is investigated. The only free parameter of the model is a power-law index $n$. We find cosmological solutions in a parameter region of $1< n leq (4+sqrt{6})/5$. We calculate ab
We consider Tsallis cosmology as an approach to thermodynamic gravity and derive the bound on the Tsallis parameter to be $beta<2$ by using the constraints derived from the formation of the primordial light elements, Helium, Deuterium and Litium, fro
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, param
As space expands, the energy density in black holes increases relative to that of radiation, providing us with motivation to consider scenarios in which the early universe contained a significant abundance of such objects. In this study, we revisit t