We demonstrate experimentally a precise realization of Coulomb Blockade Thermometry (CBT) working at temperatures up to 60 K. Advances in nano fabrication methods using electron beam lithography allow us to fabricate a uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading uncertainty of about 1%
The charge localization of single electrons on mesoscopic metallic islands leads to a suppression of the electrical current, known as the Coulomb blockade. When this correction is small, it enables primary electron thermometry, as it was first demons
trated by Pekola et al. (Phys. Rev. Letters, 73, 2903 [1994]). However, in the low temperature limit, random charge offsets influence the conductance and limit the universal behavior of a single metallic island. In this work, we numerically investigate the conductance of a junction array, and demonstrate the extension of the primary regime for large arrays, even when the variations in the device parameters are taken into account. We find that our simulations agree well with measured conductance traces in the submillikelvin electron temperature regime.
We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show tha
t corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.
A tunable directional coupler based on Coulomb Blockade effect is presented. Two electron waveguides are coupled by a quantum dot to an injector waveguide. Electron confinement is obtained by surface Schottky gates on single GaAs/AlGaAs heterojunctio
n. Magneto-electrical measurements down to 350 mK are presented and large transconductance oscillations are reported on both outputs up to 4.2 K. Experimental results are interpreted in terms of Coulomb Blockade effect and the relevance of the present design strategy for the implementation of an electronic multiplexer is underlined.
The Coulomb Blockade Thermometer (CBT) is a primary thermometer for cryogenic temperatures, with demonstrated operation from below 1 mK up to 60 K. Its performance as a primary thermometer has been verified at temperatures from 20 mK to 200 mK at unc
ertainty level below 1 % (k = 2). In a new project, our aim is to extend the metrologically verified temperature range of the primary CBT up to 25 K. We also demonstrate close-to-ideal operation of a CBT with only two tunnel junctions when the device is embedded in a low-impedance environment.
We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presenc
e of necks arising from the roughness of the graphene edge. With the average transmission as the only fitting parameter, our theory shows good agreement with the experimental data.