ﻻ يوجد ملخص باللغة العربية
We study metric transformations which depend on a scalar field $phi$ and its first derivatives and confirm that the number of physical degrees of freedom does not change under such transformations, as long as they are not singular. We perform a Hamiltonian analysis of a simple model in the gauge $phi = t$. In addition, we explicitly show that the transformation and the gauge fixing do commute in transforming the action. We then extend the analysis to more general gravitational theories and transformations in general gauges. We verify that the set of all constraints and the constraint algebra are left unchanged by such transformations and conclude that the number of degrees of freedom is not modified by a regular and invertible generic transformation among two metrics. We also discuss the implications on the recently called hidden constraints and on the case of a singular transformation, a.k.a. mimetic gravity.
We study a free scalar field $phi$ in a fixed curved background spacetime subject to a higher derivative field equation of the form $F(Box)phi =0$, where $F$ is a polynomial of the form $F(Box)= prod_i (Box-m_i^2)$ and all masses $m_i$ are distinct a
Systematic understanding for classes of inflationary models is investigated from the viewpoint of the local conformal symmetry and the slightly broken global symmetry in the framework of the metric-affine geometry. In the metric-affine geometry, whic
In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does
We motivate a minimal realization of slow-roll $k$-inflation by incorporating the local conformal symmetry and the broken global $mathrm{SO}(1,1)$ symmetry in the metric-affine geometry. With use of the metric-affine geometry where both the metric an
We discuss a field transformation from fields $psi_a$ to other fields $phi_i$ that involves derivatives, $phi_i = bar phi_i(psi_a, partial_alpha psi_a, ldots ;x^mu)$, and derive conditions for this transformation to be invertible, primarily focusing