ترغب بنشر مسار تعليمي؟ اضغط هنا

Alfven wave phase-mixing in flows: Why over-dense, solar coronal, open magnetic field structures are cool?

261   0   0.0 ( 0 )
 نشر من قبل David Tsiklauri
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Tsiklauri




اسأل ChatGPT حول البحث

The motivation for this study is to include the effect of plasma flow in Alfven wave (AW) damping via phase mixing and to explore the observational implications. Our magnetohydrodynamic (MHD) simulations and analytical calculations show that, when a background flow is present, mathematical expressions for the AW damping via phase mixing are modified by the following substitution: $C_A^prime(x) to C_A^prime(x)+V_0^prime(x)$, where $C_A$ and $V_0$ are AW phase and the flow speeds, and the prime denotes a derivative in the direction across the background magnetic field. In uniform magnetic fields and over-dense plasma structures, where $C_A$ is smaller than in the surrounding plasma, the flow, which is confined to the structure and going in the same direction as the AW, reduces the effect of phase-mixing, because on the edges of the structure $C_A^prime$ and $V_0^prime$ have opposite signs. Thus, the wave damps by means of slower phase-mixing compared to the case without the flow. This is the result of the co-directional flow that reduces the wave front stretching in the transverse direction. We apply our findings to addressing the question why over-dense solar coronal open magnetic field structures (OMFS) are cooler than the background plasma. Observations show that the over-dense OMFS (e.g. solar coronal polar plumes) are cooler than surrounding plasma and that, in these structures, Doppler line-broadening is consistent with bulk plasma motions, such as AW. If over-dense solar coronal OMFS are heated by AW damping via phase-mixing, we show that, co-directional with AW, plasma flow in them reduces the phase-mixing induced-heating, thus providing an explanation of why they appear cooler than the background.



قيم البحث

اقرأ أيضاً

229 - D. Tsiklauri 2014
Previous studies [Malara et al ApJ, 533, 523 (2000)] considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. In this work linearly polarised Alfven wave dynamics in ABC magnetic f ield via direct 3D MHD numerical simulation is studied for the first time. Gaussian AW pulse with length-scale much shorter than ABC domain length and harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, surprisingly, AW perturbation energy increases in time. In the case of the harmonic AW perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than resistive time. In the case of the Gaussian AW pulse velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed to a new instability. The growth rate appears to be dependent on the value of the resistivity and spatial scale of the AW disturbance. Thus, when going beyond WKB approximation, AW damping, described by full MHD equations, does not guarantee decrease of perturbation energy.
We present a new version of the Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. Th e injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength EUV images of CR2107 with the observations from STEREO/EUVI and SDO/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in proximity of active regions intensifies the dissipation and observable emission sufficiently.
Coronal plasma in the cores of solar active regions is impulsively heated to more than 5 MK. The nature and location of the magnetic energy source responsible for such impulsive heating is poorly understood. Using observations of seven active regions from the Solar Dynamics Observatory, we found that a majority of coronal loops hosting hot plasma have at least one footpoint rooted in regions of interacting mixed magnetic polarity at the solar surface. In cases when co-temporal observations from the Interface Region Imaging Spectrograph space mission are available, we found spectroscopic evidence for magnetic reconnection at the base of the hot coronal loops. Our analysis suggests that interactions of magnetic patches of opposite polarity at the solar surface and the associated energy release during reconnection are key to impulsive coronal heating.
A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfven-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflecti on-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ($P_{rm AWb}$) that is transferred to solar-wind particles via heating between the coronal base and heliocentric distance $r$, which we denote $chi_{rm H}(r)$, and the fraction that is transferred via work, which we denote $chi_{rm W}(r)$. We find that $chi_{rm W}(r_{rm A})$ ranges from 0.15 to 0.3, where $r_{rm A}$ is the Alfven critical point. This value is small compared to~one because the Alfven speed $v_{rm A} $ exceeds the outflow velocity $U$ at $r<r_{rm A}$, so the AWs race through the plasma without doing much work. At $r>r_{rm A}$, where $v_{rm A} < U$, the AWs are in an approximate sense stuck to the plasma, which helps them do pressure work as the plasma expands. However, much of the AW power has dissipated by the time the AWs reach $r=r_{rm A}$, so the total rate at which AWs do work on the plasma at $r>r_{rm A}$ is a modest fraction of $P_{rm AWb}$. We find that heating is more effective than work at $r<r_{rm A}$, with $chi_{rm H}(r_{rm A})$ ranging from 0.5 to 0.7. The reason that $chi_{rm H} geq 0.5$ in our simulations is that an appreciable fraction of the local AW power dissipates within each Alfven-speed scale height in RDAWT, and there are a few Alfven-speed scale heights between the coronal base and $r_{rm A}$.
The magnetic topology and field line random walk properties of a nanoflare-heated and magnetically confined corona are investigated in the reduced magnetohydrodynamic regime. Field lines originating from current sheets form coherent structures, calle d Current Sheet Connected (CSC) regions, extended around them. CSC field line random walk is strongly anisotropic, with preferential diffusion along the current sheets in-plane length. CSC field line random walk properties remain similar to those of the entire ensemble but exhibit enhanced mean square displacements and separations due to the stronger magnetic field intensities in CSC regions. The implications for particle acceleration and heat transport in the solar corona and wind, and for solar moss formation are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا