ﻻ يوجد ملخص باللغة العربية
The problem of finding large cliques in random graphs and its planted variant, where one wants to recover a clique of size $omega gg log{(n)}$ added to an Erdos-Renyi graph $G sim G(n,frac{1}{2})$, have been intensely studied. Nevertheless, existing polynomial time algorithms can only recover planted cliques of size $omega = Omega(sqrt{n})$. By contrast, information theoretically, one can recover planted cliques so long as $omega gg log{(n)}$. In this work, we continue the investigation of algorithms from the sum of squares hierarchy for solving the planted clique problem begun by Meka, Potechin, and Wigderson (MPW, 2015) and Deshpande and Montanari (DM,2015). Our main results improve upon both these previous works by showing: 1. Degree four SoS does not recover the planted clique unless $omega gg sqrt n poly log n$, improving upon the bound $omega gg n^{1/3}$ due to DM. A similar result was obtained independently by Raghavendra and Schramm (2015). 2. For $2 < d = o(sqrt{log{(n)}})$, degree $2d$ SoS does not recover the planted clique unless $omega gg n^{1/(d + 1)} /(2^d poly log n)$, improving upon the bound due to MPW. Our proof for the second result is based on a fine spectral analysis of the certificate used in the prior works MPW,DM and Feige and Krauthgamer (2003) by decomposing it along an appropriately chosen basis. Along the way, we develop combinatorial tools to analyze the spectrum of random matrices with dependent entries and to understand the symmetries in the eigenspaces of the set symmetric matrices inspired by work of Grigoriev (2001). An argument of Kelner shows that the first result cannot be proved using the same certificate. Rather, our proof involves constructing and analyzing a new certificate that yields the nearly tight lower bound by correcting the certificate of previous works.
We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, the $n^{O(d)}$-time degree $d$ Sum-of-Squares semidefinite programming relaxation for the clique problem will give a value of a
Finding cliques in random graphs and the closely related planted clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynom
We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which postulates that any algorithm for planted clique must run in time $n^{Omega(log{n})}$ (so that the state-of-the-art running time of $n^{O(log n)}$ is optima
We construct an explicit family of 3XOR instances which is hard for $O(sqrt{log n})$ levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in determin
Given a large data matrix $Ainmathbb{R}^{ntimes n}$, we consider the problem of determining whether its entries are i.i.d. with some known marginal distribution $A_{ij}sim P_0$, or instead $A$ contains a principal submatrix $A_{{sf Q},{sf Q}}$ whose