ترغب بنشر مسار تعليمي؟ اضغط هنا

A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum

153   0   0.0 ( 0 )
 نشر من قبل Michael F. Corcoran
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an overview of four phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system which includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object which can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary, Delta Ori A provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ksec and covering nearly the entire binary orbit. Companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities simultaneous with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectrum. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about $0.3-0.5times$ the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of ion{Fe}{17} and ion{Ne}{10} are inconsistent with model predictions, which may be an effect of resonance scattering

قيم البحث

اقرأ أيضاً

We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral dataset of the $delta$ Orionis Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ~47 9 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 $AA$ is confirmed, with maximum amplitude of about +/-15% within a single ~125 ks observation. Periods of 4.76d and 2.04d are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phase=0.0 when the secondary $delta$ Orionis Aa2 is at inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.
We present the analysis of XMM-Newton and Swift optical-UV and X-ray observations of the Seyfert-1/QSO Mrk 509, part of an unprecedented multi-wavelength campaign, investigating the nuclear environment of this AGN. The XMM-Newton data are from a seri es of 10 observations of about 60 ks each, spaced from each other by about 4 days, taken in Oct-Nov 2009. During our campaign, Mrk 509 was also observed with Swift for a period of about 100 days, monitoring the behaviour of the source before and after the XMM-Newton observations. With these data we have established the continuum spectrum in the optical-UV and X-ray bands and investigated its variability on the timescale of our campaign with a resolution time of a few days. In order to measure and model the continuum as far as possible into the UV, we also made use of HST/COS observations of Mrk 509 (part of our coordinated campaign) and of an archival FUSE observation. We have found that in addition to an X-ray power-law, the spectrum displays soft X-ray excess emission below 2 keV, which interestingly varies in association with the thermal optical-UV emission from the accretion disc. The change in the X-ray power-law component flux (albeit smaller than that of the soft excess), on the other hand, is uncorrelated to the flux variability of the soft X-ray excess and the disc component on the probed timescale. The results of our simultaneous broad-band spectral and timing analysis suggest that, on a resolution time of a few days, the soft X-ray excess of Mrk 509 is produced by the Comptonisation of the thermal optical-UV photons from the accretion disc by a warm (0.2 keV) optically thick (tau ~ 17) corona surrounding the inner regions of the disc. This makes Mrk 509, with a black hole mass of about 1-3 x 10^8 solar masses, the highest mass known system to display such behaviour and origin for the soft X-ray excess.
213 - K. Beuermann 2020
We report on the X-ray observations of the eclipsing polar HY Eri (RX J0501-0359), along with its photometric, spectrophotometric, and spectropolarimetric optical variations, collected over 30 years. With an orbital period of 2.855 h, HY Eri falls ne ar the upper edge of the 2-3 h period gap. After 2011, the system went into a prolonged low state, continuing to accrete at a low level. We present an accurate alias-free long-term orbital ephemeris and report a highly significant period change by 10 ms that took place over the time interval from 2011 to 2018. We acquired a high-quality eclipse spectrum that shows the secondary star as a dM5-6 dwarf at a distance $d = 1050 pm 110$ pc. Based on phase-resolved cyclotron and Zeeman spectroscopy, we identify the white dwarf (WD) in HY Eri as a two-pole accretor with nearly opposite accretion spots of 28 and 30 MG. The Zeeman analysis of the low state spectrum reveals a complex magnetic field structure, which we fit by a multipole model. We detected narrow emission lines from the irradiated face of the secondary star, of which Mg I $lambda 5170$ with a radial velocity amplitude of $K_2 = 139 pm 10$ km/s (90% confidence) tracks the secondary more reliably than the narrow H$alpha$ line. Based on the combined dynamical analysis and spectroscopic measurement of the angular radius of the WD, we obtain a primary mass of $M_1 = 0.42 pm 0.05$ $M_odot$ (90% confidence errors), identifying it as a probable He WD or hybrid HeCO WD. The secondary is a main sequence star of $M_2 = 0.24 pm 0.04$ $M_odot$ that seems to be slightly inflated. The large distance of HY Eri and the lack of similar systems suggest a very low space density of polars with low-mass primary. According to current theory, these systems are destroyed by induced runaway mass transfer, suggesting that HY Eri may be doomed to destruction.
During normal Type I outbursts, the pulse profiles of Be/X-ray binary pulsars are found to be complex in soft X-ray energy ranges. The profiles in soft X-ray energy ranges are characterized by the presence of narrow absorption dips or dip-like featur es at several pulse phases. However, in hard X-ray energy ranges, the pulse profiles are rather smooth and single-peaked. Pulse phase-averaged spectroscopy of the these pulsars had been carried out during Type I outbursts. The broad-band spectrum of these pulsars were well described by partial covering high energy cutoff power-law model with interstellar absorption and Iron K_alpha emission line at 6.4 keV. Phase-resolved spectroscopy revealed that the presence of additional matter at certain pulse phases that partially obscured the emitted radiation giving rise to dips in the pulse profiles. The additional absorption is understood to be taking place by matter in the accretion streams that are phase locked with the neutron star. Optical/infrared observations of the companion Be star during these Type I outbursts showed that the increase in the X-ray intensity of the pulsar is coupled with the decrease in the optical/infrared flux of the companion star. There are also several changes in the IR/optical emission line profiles during these X-ray outbursts. The X-ray properties of these pulsars during Type I outbursts and corresponding changes in optical/infrared wavebands are discussed in this paper.
87 - Gregor Rauw , Yael Naze 2016
Very young open clusters are ideal places to study the X-ray properties of a homogeneous population of early-type stars. In this respect, the IC1805 open cluster is very interesting as it hosts the O4If$^+$ star HD15570 thought to be in an evolutiona ry stage intermediate between a normal O-star and a Wolf-Rayet star. Such a star could provide a test for theoretical models aiming at explaining the empirical scaling relation between the X-ray and bolometric luminosities of O-type stars. We have observed IC1805 with XMM-Newton and further collected optical spectroscopy of some of the O-star members of the cluster. The optical spectra allow us to revisit the orbital solutions of BD+60$^{circ}$ 497 and HD15558, and provide the first evidence of binarity for BD+60$^{circ}$ 498. X-ray emission from colliding winds does not appear to play an important role among the O-stars of IC1805. Notably, the X-ray fluxes do not vary significantly between archival X-ray observations and our XMM-Newton pointing. The very fast rotator BD+60$^{circ}$ 513, and to a lesser extent the O4If$^+$ star HD15570 appear somewhat underluminous. Whilst the underluminosity of HD15570 is only marginally significant, its amplitude is found to be compatible with theoretical expectations based on its stellar and wind properties. A number of other X-ray sources are detected in the field, and the brightest objects, many of which are likely low-mass pre-main sequence stars, are analyzed in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا