ترغب بنشر مسار تعليمي؟ اضغط هنا

Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO tower prototype

210   0   0.0 ( 0 )
 نشر من قبل Paolo Piattelli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The NEMO Phase-2 tower is the first detector which was operated underwater for more than one year at the record depth of 3500 m. It was designed and built within the framework of the NEMO (NEutrino Mediterranean Observatory) project. The 380 m high tower was successfully installed in March 2013 80 km offshore Capo Passero (Italy). This is the first prototype operated on the site where the italian node of the KM3NeT neutrino telescope will be built. The installation and operation of the NEMO Phase-2 tower has proven the functionality of the infrastructure and the operability at 3500 m depth. A more than one year long monitoring of the deep water characteristics of the site has been also provided. In this paper the infrastructure and the tower structure and instrumentation are described. The results of long term optical background measurements are presented. The rates show stable and low baseline values, compatible with the contribution of 40K light emission, with a small percentage of light bursts due to bioluminescence. All these features confirm the stability and good optical properties of the site.

قيم البحث

اقرأ أيضاً

The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.
Cherenkov light induced by radioactive decay products is one of the major sources of background light for deep-sea neutrino telescopes such as ANTARES. These decays are at the same time a powerful calibration source. Using data collected by the ANTAR ES neutrino telescope from mid 2008 to 2017, the time evolution of the photon detection efficiency of optical modules is studied. A modest loss of only 20% in 9 years is observed. The relative time calibration between adjacent modules is derived as well.
Probably, the long-term monitoring of the solar atmosphere started in Italy with the first telescopic observations of the Sun made by Galileo Galilei in the early $17^{mathrm{th}}$ century. His recorded observations and science results, as well as th e work carried out by other following outstanding Italian astronomers inspired the start of institutional programs of regular solar observations at the Arcetri, Catania, and Rome Observatories. These programs have accumulated daily images of the solar photosphere and chromosphere taken at various spectral bands over a time span greater than 80 years. In the last two decades, regular solar observations were continued with digital cameras only at the Catania and Rome Observatories, which are now part of the INAF National Institute for Astrophysics. At the two sites, daily solar images are taken at the photospheric G-band, Blue ($lambda=409.4$ nm), and Red ($lambda=606.9$ nm) continua spectral ranges and at the chromospheric Ca II K and H$alpha$ lines, with a $2^{primeprime}$ spatial resolution. Solar observation in Italy, which benefits from over 2500 hours of yearly sunshine, currently aims at the operational monitoring of solar activity and long-term variability and at the continuation of the historical series as well. Existing instruments will be soon enriched by the SAMM double channel telescope equipped with magneto-optical filters that will enable the tomography of the solar atmosphere with simultaneous observations at the K I 769.9 nm and Na I D 589.0 nm lines. In this contribution, we present the available observations and outline their scientific relevance.
The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the u se of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40}$K decay and the localization bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions.
Description of the TAU-4 installation intended for long-term monitoring of the half-life value $T_{1/2}$ of the $^{212}$Po is presented. Natural thorium used as a source of the mothers chain. The methods of measurement and data processing are describ ed. The comparative results of short test measurements carried out in the ground (680 h) and underground (564 h) laboratories are given. Averaged value $T_{1/2}$ =$294.09pm 0.07$ ns of the $^{212}$Po half-life has been found for the ground level data set similar one for the underground data set. The solar-daily variations with amplitudes $A_{So}=(11.7pm 5.2)times10^{-4}$ for the ground data and $A_{So}=(7.5pm 4.1)times10^{-4}$ for the underground one were found in a series of $tau$ values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا