ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hyper Suprime-Cam View of the Interacting Galaxies of the M81 Group

178   0   0.0 ( 0 )
 نشر من قبل Sakurako Okamoto
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first results of a wide-field mapping survey of the M81 group conducted with Hyper Suprime-Cam on the Subaru Telescope. Our deep photometry reaches $sim2$ magnitudes below the tip of the red giant branch (RGB) and reveals the spatial distribution of both old and young stars over an area of $sim 100times115$ kpc at the distance of M81. The young stars ($sim30-160$ Myr old) closely follow the neutral hydrogen distribution and can be found in a stellar stream between M81 and NGC,3077 and in numerous outlying stellar associations, including the known concentrations of Arps Loop, Holmberg,IX, an arc in the halo of M82, BK3N, and the Garland. Many of these groupings do not have counterparts in the RGB maps, suggesting they may be genuinely young systems. Our survey also reveals for the first time the very extended ($geq 2times rm{R_{25}}$) halos of RGB stars around M81, M82 and NGC,3077, as well as faint tidal streams that link these systems. The halos of M82 and NGC,3077 exhibit highly disturbed morphologies, presumably a consequence of the recent gravitational encounter and their ongoing disruption. While the halos of M81, NGC,3077 and the inner halo of M82 have the similar $(g-i)_{0}$ colors, the outer halo of M82 is significantly bluer indicating it is more metal-poor. Remarkably, our deep panoramic view of the M81 group demonstrates that the complexity long-known to be present in HI is equally matched in the low surface brightness stellar component.



قيم البحث

اقرأ أيضاً

We present a catalog of extended low-surface-brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ${sim}$200 deg$^2$ of the survey, we have uncovered 781 LSBGs, spanning red ($g-igeq0.64$) and blue ($g-i<0.64$) colors and a wide range of morphologies. Since we focus on extended galaxies ($r_mathrm{eff}=2.5$-$14^{primeprime}$), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses $bar{mu}_mathrm{eff}(g)>24.3$ mag arcsec$^{-2}$, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of $mu_0(g)=18$-$27.4$ mag arcsec$^{-2}$, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec$^{-2}$, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well-characterized by single-component S{e}rsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We crossmatch our sample with existing optical, HI, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultra-diffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.
We study the faint stellar halo of isolated central galaxies, by stacking galaxy images in the HSC survey and accounting for the residual sky background sampled with random points. The surface brightness profiles in HSC $r$-band are measured for a wi de range of galaxy stellar masses ($9.2<log_{10}M_ast/M_odot<11.4$) and out to 120 kpc. Failing to account for the stellar halo below the noise level of individual images will lead to underestimates of the total luminosity by $leq 15%$. Splitting galaxies according to the concentration parameter of their light distributions, we find that the surface brightness profiles of low concentration galaxies drop faster between 20 and 100 kpc than those of high concentration galaxies. Albeit the large galaxy-to-galaxy scatter, we find a strong self-similarity of the stellar halo profiles. They show unified forms once the projected distance is scaled by the halo virial radius. The colour of galaxies is redder in the centre and bluer outside, with high concentration galaxies having redder and more flattened colour profiles. There are indications of a colour minimum, beyond which the colour of the outer stellar halo turns red again. This colour minimum, however, is very sensitive to the completeness in masking satellite galaxies. We also examine the effect of the extended PSF in the measurement of the stellar halo, which is particularly important for low mass or low concentration galaxies. The PSF-corrected surface brightness profile can be measured down to $sim$31 $mathrm{mag}/mathrm{arcsec}^2$ at 3-$sigma$ significance. PSF also slightly flattens the measured colour profiles.
The relationship between quasars and their host galaxies provides clues on how supermassive black holes (SMBHs) and massive galaxies are jointly assembled. To elucidate this connection, we measure the structural and photometric properties of the host galaxies of ~5000 SDSS quasars at 0.2<z<1 using five-band (grizy) optical imaging from the Hyper Suprime-Cam Subaru Strategic Program. An automated analysis tool is used to forward-model the blended emission of the quasar as characterized by the point spread function and the underlying host galaxy as a two-dimensional Sersic profile. In agreement with previous studies, quasars are preferentially hosted by massive star-forming galaxies with disk-like light profiles. Furthermore, we find that the size distribution of quasar hosts is broad at a given stellar mass and the average values exhibit a size-stellar mass relation as seen with inactive galaxies. In contrast, the sizes of quasar hosts are more compact than inactive star-forming galaxies on average, but not as compact as quiescent galaxies of similar stellar masses. This is true irrespective of quasar properties including bolometric luminosity, Eddington ratio, and black hole mass. These results are consistent with a scenario in which galaxies are concurrently fueling a SMBH and building their stellar bulge from a centrally-concentrated gas reservoir. Alternatively, quasar hosts may be experiencing a compaction process in which stars from the disk and inflowing gas are responsible for growing the bulge. In addition, we confirm that the host galaxies of type-1 quasars have a bias of being closer towards face-on, suggesting that galactic-scale dust can contribute to obscuring the broad-line region.
In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescopes Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescopes Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high level processing steps that generate coadded images and science-ready catalogs as well as low-level detrending and image characterizations.
We present the photometric properties of a sample of infrared (IR) bright dust obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam (HSC) on the Subaru Telescope and all-sky mid-IR (MIR) images taken wi th Wide-Field Infrared Survey Explorer (WISE), we discovered 48 DOGs with $i - K_mathrm{s} > 1.2$ and $i - [22] > 7.0$, where $i$, $K_mathrm{s}$, and [22] represent AB magnitude in the $i$-band, $K_mathrm{s}$-band, and 22 $mu$m, respectively, in the GAMA 14hr field ($sim$ 9 deg$^2$). Among these objects, 31 ($sim$ 65 %) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show a NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma $z$ = 1.99 $pm$ 0.45, we calculated their total IR luminosity using an empirical relation between 22 $mu$m luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 $pm$ 1.1) $times$ $10^{13}$ L$_{odot}$, which classifies them as hyper-luminous infrared galaxies (HyLIRGs). We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 $mu$m flux greater than 3.0 mJy and with $i$-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log $phi$ = -6.59 $pm$ 0.11 [Mpc$^{-3}$]. The IR LF for DOGs including data obtained from the literature is well fitted by a double-power law. The derived lower limit for the IR LD for our sample is $rho_{mathrm{IR}}$ $sim$ 3.8 $times$ 10$^7$ [L$_{odot}$ Mpc$^{-3}$] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies (ULIRGs), and that of all DOGs are $>$ 3 %, $>$ 9 %, and $>$ 15 %, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا