ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Observations of Giant Pulses from the Crab Pulsar, with the Murchison Widefield Array and Parkes Radio Telescope: Implications for the Giant Pulse Emission Mechanism

215   0   0.0 ( 0 )
 نشر من قبل Samuel Oronsaye
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5$sigma$ and 6.5$sigma$ respectively. We detected 51$%$ of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of $-3.6>alpha> -4.9$ ($S_{rm u} propto u^alpha$). We present a Monte Carlo analysis supporting the conjecture that the giant pulse emission in the Crab is intrinsically broadband, the less than $100%$ correlation being due to the relative sensitivities of the two instruments and the width of the spectral index distribution. Our observations are consistent with the hypothesis that the spectral index of giant pulses is drawn from normal distribution of standard deviation 0.6, but with a mean that displays an evolution with frequency from -3.00 at 1382 MHz, to -2.85 at 192 MHz.



قيم البحث

اقرأ أيضاً

Giant radio pulses (GRPs) are sporadic bursts emitted by some pulsars, lasting a few microseconds. GRPs are hundreds to thousands of times brighter than regular pulses from these sources. The only GRP-associated emission outside radio wavelengths is from the Crab Pulsar, where optical emission is enhanced by a few percent during GRPs. We observed the Crab Pulsar simultaneously at X-ray and radio wavelengths, finding enhancement of the X-ray emission by $3.8pm0.7%$ (a 5.4$sigma$ detection) coinciding with GRPs. This implies that the total emitted energy from GRPs is tens to hundreds of times higher than previously known. We discuss the implications for the pulsar emission mechanism and extragalactic fast radio bursts.
64 - A. Jessner 2004
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our observations show that GRPs can be found in all phases of ordinary radio emission including the two high frequency components (HFCs) visible only between 5 and 9 GHz (Moffett & Hankins, 1996). This leads us to believe that there is no difference in the emission mechanism of the main pulse (MP), inter pulse (IP) and HFCs. High resolution dynamic spectra from our recent observations of giant pulses with the Effelsberg telescope at a center frequency of 8.35 GHz show distinct spectral maxima within our observational bandwidth of 500 MHz for individual pulses. Their narrow band components appear to be brighter at higher frequencies (8.6 GHz) than at lower ones (8.1 GHz). Moreover, there is an evidence for spectral evolution within and between those structures. High frequency features occur earlier than low frequency ones. Strong plasma turbulence might be a feasible mechanism for the creation of the high energy densities of ~6.7 x 10^4 erg cm^-3 and brightness temperatures of 10^31 K.
We present the results of the simultaneous observation of the giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70% or more of the GRP spectra are consistent with single power laws and the spectral indices of them are distributed from $-4$ to $-1$. We also find that a significant number of GRPs have such a hard spectral index (approximately $-1$) that the fluence at 0.3 GHz is below the detection limit (dim-hard GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensive studies on the GRP spectra are useful materials to verify the GRP model of fast radio bursts in future observations.
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 -- 300 keV band and the Kashima NICT radio observ atory in the 1.4 -- 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission.The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases.All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter- pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2 -- 300 keV band.The values become 25% or 110% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase.Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports.Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) $times 10^{-11}$ erg cm$^{-2}$, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases.However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a $>0.02$% brightening of the pulse-peak flux under such conditions.
We have observed the Crab pulsar with the Deep Space Network (DSN) Goldstone 70 m antenna at 1664 MHz during three observing epochs for a total of 4 hours. Our data analysis has detected more than 2500 giant pulses, with flux densities ranging from 0 .1 kJy to 150 kJy and pulse widths from 125 ns (limited by our bandwidth) to as long as 100 microseconds, with median power amplitudes and widths of 1 kJy and 2 microseconds respectively. The most energetic pulses in our sample have energy fluxes of approximately 100 kJy-microsecond. We have used this large sample to investigate a number of giant-pulse emission properties in the Crab pulsar, including correlations among pulse flux density, width, energy flux, phase and time of arrival. We present a consistent accounting of the probability distributions and threshold cuts in order to reduce pulse-width biases. The excellent sensitivity obtained has allowed us to probe further into the population of giant pulses. We find that a significant portion, no less than 50%, of the overall pulsed energy flux at our observing frequency is emitted in the form of giant pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا