ﻻ يوجد ملخص باللغة العربية
We have coupled a fast, parametrized star cluster evolution code to a Markov Chain Monte Carlo code to determine the distribution of probable initial conditions of observed star clusters, which may serve as a starting point for future $N$-body calculations. In this paper we validate our method by applying it to a set of star clusters which have been studied in detail numerically with $N$-body simulations and Monte Carlo methods: the Galactic globular clusters M4, 47 Tucanae, NGC 6397, M22, $omega$ Centauri, Palomar 14 and Palomar 4, the Galactic open cluster M67, and the M31 globular cluster G1. For each cluster we derive a distribution of initial conditions that, after evolution up to the clusters current age, evolves to the currently observed conditions. We find that there is a connection between the morphology of the distribution of initial conditions and the dynamical age of a cluster and that a degeneracy in the initial half-mass radius towards small radii is present for clusters which have undergone a core collapse during their evolution. We find that the results of our method are in agreement with $N$-body and Monte Carlo studies for the majority of clusters. We conclude that our method is able to find reliable posteriors for the determined initial mass and half-mass radius for observed star clusters, and thus forms an suitable starting point for modeling an observed clusterrq{}s evolution.
Context: The ESO Public Survey VISTA Variables in the Via Lactea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Aims: The VVV observations will foste
Cool giant and supergiant star atmospheres are characterized by complex velocity fields originating from convection and pulsation processes which are not fully understood yet. The velocity fields impact the formation of spectral lines, which thus con
We describe the development and implementation of the SEGUE (Sloan Extension for Galactic Exploration and Understanding) Stellar Parameter Pipeline (SSPP). The SSPP derives, using multiple techniques, radial velocities and the fundamental stellar atm
We present a new technique to quantify cluster-to-cluster variations in the observed present-day stellar mass functions of a large sample of star clusters. Our method quantifies these differences as a function of both the stellar mass and the total c
We present combined interferometer and single dish telescope data of NH3 (J,K) = (1,1) and (2,2) emission towards the clustered star forming Ophiuchus B, C and F Cores at high spatial resolution (~1200 AU) using the Australia Telescope Compact Array,