ﻻ يوجد ملخص باللغة العربية
We study role of site substitutions at In and Te site in In2Te5 on the thermoelectric behavior. Single crystals with compositions In2(Te1-xSex)5 (x = 0, 0.05, 0.10) and Fe0.05In1.95(Te0.90Se0.10)5 were prepared using modified Bridgman-Stockbarger technique. Electrical and thermal transport properties of these single crystals were measured in the temperature range 6 - 395 K. A substantial decrease in thermal conductivity is observed in Fe substituted samples attributed to the enhanced phonon point-defect scattering. Marked enhancement in Seebeck coefficient S along with a concomitant suppression of electrical resistivity r{ho} is observed in Se substituted single crystals. An overall enhancement of thermoelectric figure of merit (zT) by a factor of 310 is observed in single crystals of Fe0.05In1.95(Te0.90Se0.10)5 compared to the parent In2Te5 single crystals.
We report a strategy based on introduction of point defects for improving the thermoelectric properties of FeSb2, a promising candidate for low temperature applications. Introduction of Sb deficiency to the tune of 20% leads to enhancement in the val
We analyze the anisotropic electrical and thermal transport measurements in single crystals of In2Te5 belonging to monoclinic space group C12 c1 with the temperature gradient applied parallel and perpendicular to the crystallographic c-axis of the cr
Lead and tin chalcogenides have been studied widely due to their promising thermoelectric (TE) properties. Further enhancement in their TE efficiency has been reported upon the reduction of the dimension, which is an important feature in modern devic
Ni$_{50}$Mn$_{34}$In$_{16}$ undergoes a martensitic transformation around 250 K and exhibits a field induced reverse martensitic transformation and substantial magnetocaloric effects. We substitute small amounts Ga for In, which are isoelectronic, to
Thermoelectric materials are opening a promising pathway to address energy conversion issues governed by a competition between thermal and electronic transport. Improving the efficiency is a difficult task, a challenge that requires new strategies to