ﻻ يوجد ملخص باللغة العربية
One superconducting taper-type half-wave resonator (HWR) with frequency of 162.5MHz, b{eta} of 0.09 has been developed at Peking University, which is used to accelerate high current proton ($sim$ 100mA) and $D^{+}$($sim$ 50mA). The radio frequency (RF) design of the cavity has been accomplished. Herein, we present the mechanical analysis of the cavity which is also an important aspect in superconducting cavity design. The frequency shift caused by bath helium pressure and Lorenz force, and the tuning by deforming the cavity along the beam axis will be analyzed in this paper.
A superconducting half-wave resonator (HWR) of frequency=162.5 MHz and {beta}=0.09 has been developed at Institute of Modern Physics. Mechanical stability of the low beta HWR cavity is a big challenge in cavity design and optimization. The mechanical
A single gap, 352 MHz superconducting reentrant cavity for 5-100 MeV beams has been designed and it is presently under construction. This development is being done in the framework of a 30 mA proton linac project for nuclear waste transmutation. Mech
Model-independent analysis (MIA) methods are generally useful for analysing complex systems in which relationships between the observables are non-trivial and noise is present. Principle Component Analysis (PCA) is one of MIA methods allowing to isol
Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. The 9-cell 1.3-GHz superconducting standing-wave accelerating RF cavity originally developed
Superconducting cavities with low RF frequencies and heavy damping of higher order modes (HOM) are desired for the main accelerator of High Energy Photon Source (HEPS), a 6 GeV synchrotron light source promising ultralow emittance currently under con