ﻻ يوجد ملخص باللغة العربية
NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to Russian doll nested Fermi surfaces containing 4*10$^{-4}$ electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T$^*$~100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.
The topological nodal-line semimetals (NLSMs) possess a loop of Dirac nodes in the k space with linear dispersion, different from the point nodes in Dirac/Weyl semimetals. While the quantum transport associated with the topologically nontrivial Dirac
Several early transition metal dipnictides have been found to host topological semimetal states and exhibit large magnetoresistance. In this study, we use angle-resolved photoemission spectroscopy (ARPES) and magneto-transport to study the electronic
The Ruddlesden-Popper (RP) series of iridates (Srn+1IrnO3n+1) have been the subject of much recent attention due to the anticipation of emergent physics arising from the cooperative action of spin-orbit (SO) driven band splitting and Coulomb interact
Using first--principles density functional calculations, we systematically investigate electronic structures and topological properties of InNbX2 (X=S, Se). In the absence of spin--orbit coupling (SOC), both compounds show nodal lines protected by mi
High-temperature superconductivity (HTSC) mysteriously emerges upon doping holes or electrons into insulating copper oxides with antiferromagnetic (AFM) order. It has been thought that the large energy scale of magnetic excitations, compared to phono