ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear absorption of high-intensity shortwave radiation in plasma within relativistic quantum theory

144   0   0.0 ( 0 )
 نشر من قبل Hamlet Avetissian Karo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On the base of the quantum kinetic equation for density matrix in plasma at the stimulated bremsstrahlung of electrons on ions, the nonlinear absorption rate for high-intensity shortwave radiation in plasma has been obtained within relativistic quantum theory. Both classical Maxwellian and degenerate quantum plasma are considered for x-ray lasers of high intensities. Essentially different dependences of nonlinear absorption rate on polarization of strong laser radiation is stated.



قيم البحث

اقرأ أيضاً

153 - C. D. Baird 2018
Collisions between high intensity laser pulses and energetic electron beams are now used to measure the transition between the classical and quantum regimes of light-matter interactions. However, the energy spectrum of laser-wakefield-accelerated ele ctron beams can fluctuate significantly from shot to shot, making it difficult to clearly discern quantum effects in radiation reaction, for example. Here we show how this can be accomplished in only a single laser shot. A millimeter-scale pre-collision drift allows the electron beam to expand to a size larger than the laser focal spot and develop a correlation between transverse position and angular divergence. In contrast to previous studies, this means that a measurement of the beams energy-divergence spectrum automatically distinguishes components of the beam that hit or miss the laser focal spot and therefore do and do not experience radiation reaction.
Electrons at the surface of a plasma that is irradiated by a laser with intensity in excess of $10^{23}~mathrm{W}mathrm{cm}^{-2}$ are accelerated so strongly that they emit bursts of synchrotron radiation. Although the combination of high photon and electron density and electromagnetic field strength at the plasma surface makes particle-particle interactions possible, these interactions are usually neglected in simulations of the high-intensity regime. Here we demonstrate an implementation of two such processes: photon absorption and stimulated emission. We show that, for plasmas that are opaque to the laser light, photon absorption would cause complete depletion of the multi-keV region of the synchrotron photon spectrum, unless compensated by stimulated emission. Our results motivate further study of the density dependence of QED phenomena in strong electromagnetic fields.
297 - Arkady Gonoskov 2017
We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby we justify the principle of t he relativistic electronic spring (RES) proposed in [A. Gonoskov et al. PRE 84, 046403 (2011)]. Using the RES principle we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with arbitrary density profile for arbitrary angle of incidence. PIC simulations show that the theory captures the essence of the plasma dynamics. In particular, it can be applied for the studies of plasma heating and surface high-harmonic generation with intense lasers.
102 - T. G. Blackburn 2019
Charged particles accelerated by electromagnetic fields emit radiation, which must, by the conservation of momentum, exert a recoil on the emitting particle. The force of this recoil, known as radiation reaction, strongly affects the dynamics of ultr arelativistic electrons in intense electromagnetic fields. Such environments are found astrophysically, e.g. in neutron star magnetospheres, and will be created in laser-matter experiments in the next generation of high-intensity laser facilities. In many of these scenarios, the energy of an individual photon of the radiation can be comparable to the energy of the emitting particle, which necessitates modelling not only of radiation reaction, but quantum radiation reaction. The worldwide development of multi-petawatt laser systems in large-scale facilities, and the expectation that they will create focussed electromagnetic fields with unprecedented intensities $> 10^{23}~mathrm{W}text{cm}^{-2}$, has motivated renewed interest in these effects. In this paper I review theoretical and experimental progress towards understanding radiation reaction, and quantum effects on the same, in high-intensity laser fields that are probed with ultrarelativistic electron beams. In particular, we will discuss how analytical and numerical methods give insight into new kinds of radiation-reaction-induced dynamics, as well as how the same physics can be explored in experiments at currently existing laser facilities.
The dependence of the mean kinetic energy of laser-accelerated electrons on the laser intensity, so-called ponderomotive scaling, was derived theoretically with consideration of the motion of a single electron in oscillating laser fields. This scalin g explains well the experimental results obtained with high-intensity pulses and durations shorter than a picosecond; however, this scaling is no longer applicable to the multi-picosecond (multi-ps) facility experiments. Here, we experimentally clarified the generation of the super-ponderomotive-relativistic electrons (SP-REs) through multi-ps relativistic laser-plasma interactions using prepulse-free LFEX laser pulses that were realized using a plasma mirror (PM). The SP-REs are produced with direct laser acceleration assisted by the self-generated quasi-static electric field and with loop-injected direct acceleration by the self- generated quasi-static magnetic field, which grow in a blowout plasma heated by a multi-ps laser pulse. Finally, we theoretically derive the threshold pulse duration to boost the acceleration of REs, which provides an important insight into the determination of laser pulse duration at kilojoule- petawatt laser facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا