ﻻ يوجد ملخص باللغة العربية
Many physical systems can be modeled as large sets of domains glued together along boundaries - biological cells meet along cell membranes, soap bubbles meet along thin films, countries meet along geopolitical boundaries, and metallic crystals meet along grain interfaces. Each class of microstructures results from a complex interplay of initial conditions and particular evolutionary dynamics. The statistical steady-state microstructure resulting from isotropic grain growth of a polycrystalline material is canonical in that it is the simplest example of a cellular microstructure resulting from a gradient flow of a simple energy, directly proportional to the total length or area of all cell boundaries. As many properties of polycrystalline materials depend on their underlying microstructure, a more complete understanding of the grain growth steady-state can provide insight into the physics of a broad range of everyday materials. In this paper we report geometric and topological features of these canonical two- and three-dimensional steady-state microstructures obtained through large, accurate simulations of isotropic grain growth.
We report on the crystal and magnetic structures, magnetic, and transport properties of SrMnSb$_2$ single crystals grown by the self-flux method. Magnetic susceptibility measurements reveal an antiferromagnetic (AFM) transition at $T_{rm N} = 295(3)$
Tomography is a widely used tool for analyzing microstructures in three dimensions (3D). The analysis, however, faces difficulty because the constituent materials produce similar grey-scale values. Sometimes, this prompts the image segmentation proce
We demonstrate a facile method to produce crystallographically textured, macroporous materials using a combination of modified ice templating and templated grain growth (TGG). The process is demonstrated on alumina and the lead-free piezoelectric mat
Volume shrinkage, grain growth, and their interaction are major events occurring during free sintering of ceramics. A high temperature sintering dilatometry curve is influenced by these both phenomena. It is shown that the continuum theory of sinteri
We study the geometrical and topological properties of the bulk (environment space) when we modify the geometry or topology of a brane-world. Through the characterization of a spherically symmetric space-time as a local brane-world immersed into six