ﻻ يوجد ملخص باللغة العربية
We present multilevel radiative transfer modeling of the scattering polarization observed in the solar O I infrared triplet around 777 nm. We demonstrate that the scattering polarization pattern observed on the solar disk forms in the chromosphere, far above the photospheric region where the bulk of the emergent intensity profiles originates. We study the sensitivity of the polarization pattern to the thermal structure of the solar atmosphere and to the presence of weak magnetic fields (0.01 - 100 G) through the Hanle effect, showing that the scattering polarization signals of the oxygen infrared triplet encode information on the magnetism of the solar chromosphere.
The solar photospheric oxygen abundance is still widely debated. Adopting the solar chemical composition based on the low oxygen abundance, as determined with the use of three-dimensional (3D) hydrodynamical model atmospheres, results in a well-known
We present the results of contemporaneous spectroscopic and photometric monitoring of the young solar-type star HD171488 (Prot~1.337 d) aimed at studying surface inhomogeneities at photospheric/chromospheric levels. Echelle FOCES spectra (R~40000) an
In order to investigate the relation between magnetic structures and the signatures of heating in plage regions, we observed a plage region with the He I 1083.0 nm and Si I 1082.7 nm lines on 2018 October 3 using the integral field unit mode of the G
In the Sun, the two forbidden [OI] lines at 630 and 636 nm were previously found to provide discrepant oxygen abundances. aims: We investigate whether this discrepancy is peculiar to the Sun or whether it is also observed in other stars. method: We m
The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their imp