ترغب بنشر مسار تعليمي؟ اضغط هنا

Shocks in unmagnetized plasma with a shear flow: Stability and magnetic field generation

48   0   0.0 ( 0 )
 نشر من قبل Mark Dieckmann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell (PIC) simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shocks electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.

قيم البحث

اقرأ أيضاً

We address an experimental observation of shear flow of micron sized dust particles in a strongly coupled complex plasma in presence of a homogeneous magnetic field. Two concentric Aluminum rings of different size are placed on the lower electrode of a radio frequency (rf) parallel plate discharge. The modified local sheath electric field is pointing outward/inward close to the inner/outher ring, respectively. The microparticles, confined by the rings and subject to an ion wind that driven by the local sheath electric field and deflected by an externally applied magnetic field, start flowing in azimuthal direction. Depending upon the rf amplitudes on the electrodes, the dust layers show rotation in opposite direction at the edges of the ring-shaped cloud resulting a strong shear in its center. MD simulations shows a good agreement with the experimental results.
We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Strong magnetic fields generated in the trailing jet shock lead to transverse deflection and acce leration of the electrons. We have self-consistently calculated the radiation from the electrons accelerated in the turbulent magnetic fields. We find that the synthetic spectra depend on the bulk Lorentz factor of the jet, the jet temperature, and the strength of the magnetic fields generated in the shock. We have also begun study of electron acceleration in the strong magnetic fields generated by kinetic shear (Kelvin-Helmholtz) instabilities. Our calculated spectra should lead to a better understanding of the complex time evolution and/or spectral structure from gamma-ray bursts, relativistic jets, and supernova remnants.
Differentially rotating flows of unmagnetized, highly conducting plasmas have been created in the Plasma Couette Experiment. Previously, hot-cathodes have been used to control plasma rotation by a stirring technique [C. Collins et al., Phys. Rev. Let t. 108, 115001(2012)] on the outer cylindrical boundary---these plasmas were nearly rigid rotors, modified only by the presence of a neutral particle drag. Experiments have now been extended to include stirring from an inner boundary, allowing for generalized circular Couette flow and opening a path for both hydrodynamic and magnetohydrodynamic experiments, as well as fundamental studies of plasma viscosity. Plasma is confined in a cylindrical, axisymmetric, multicusp magnetic field, with $T_e< 10$ eV, $T_i<1$ eV, and $n_e<10^{11}$ cm$^{-3}$. Azimuthal flows (up to 12 km/s, $M=V/c_ssim 0.7$) are driven by edge ${bf J times B}$ torques in helium, neon, argon, and xenon plasmas, and the experiment has already achieved $Rmsim 65$ and $Pmsim 0.2 - 12$. We present measurements of a self-consistent, rotation-induced, species-dependent radial electric field, which acts together with pressure gradient to provide the centripetal acceleration for the ions. The maximum flow speeds scale with the Alfv{e}n critical ionization velocity, which occurs in partially ionized plasma. A hydrodynamic stability analysis in the context of the experimental geometry and achievable parameters is also explored.
Gamma ray bursts are among the most energetic events in the known universe. A highly relativistic fireball is ejected. In most cases the burst itself is followed by an afterglow, emitted under deceleration as the fireball plunges through the circum-s tellar media. To interpret the observations of the afterglow emission, two physical aspects need to be understood: 1) The origin and nature of the magnetic field in the fireball and 2) the particle velocity distribution function behind the shock. Both are necessary in existing afterglow models to account for what is believed to be synchrotron radiation. To answer these questions, we need to understand the microphysics at play in collisionless shocks. Using 3D particle-in-cell simulations we can gain insight in the microphysical processes that take place in such shocks. We discuss the results of such computer experiments. It is shown how a Weibel-like two-stream plasma instability is able to create a strong transverse intermittent magnetic field and points to a connected mechanism for in situ particle acceleration in the shock region.
We have investigated generation of magnetic fields associated with velocity shear between an unmagnetized relativistic jet and an unmagnetized sheath plasma. We have examined the strong magnetic fields generated by kinetic shear (Kelvin-Helmholtz) in stabilities. Compared to the previous studies using counter-streaming performed by Alves et al. (2012), the structure of KKHI of our jet-sheath configuration is slightly different even for the global evolution of the strong transverse magnetic field. In our simulations the major components of growing modes are the electric field $E_{rm z}$ and the magnetic field $B_{rm y}$. After the $B_{rm y}$ component is excited, an induced electric field $E_{rm x}$ becomes significant. However, other field components remain small. We find that the structure and growth rate of KKHI with mass ratios $m_{rm i}/m_{rm e} = 1836$ and $m_{rm i}/m_{rm e} = 20$ are similar. In our simulations saturation in the nonlinear stage is not as clear as in counter-streaming cases. The growth rate for a mildly-relativistic jet case ($gamma_{rm j} = 1.5$) is larger than for a relativistic jet case ($gamma_{rm j} = 15$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا