ترغب بنشر مسار تعليمي؟ اضغط هنا

The thermal neutron capture cross section of the radioactive isotope $^{60}$Fe

69   0   0.0 ( 0 )
 نشر من قبل Rene Reifarth
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

50% of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as $^{60}$Fe with a half-life of $2.60times10^6$ yr. To reproduce this $gamma$-activity in the universe, the nucleosynthesis of $^{60}$Fe has to be understood reliably. A $^{60}$Fe sample produced at the Paul-Scherrer-Institut was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universitat Mainz. The thermal neutron capture cross section has been measured for the first time to $sigma_{text{th}}=0.226 (^{+0.044}_{-0.049})$ b. An upper limit of $sigma_{text{RI}} < 0.50$ b could be determined for the resonance integral. An extrapolation towards the astrophysicaly interesting energy regime between $kT$=10 keV and 100 keV illustrates that the s-wave part of the direct capture component can be neglected.

قيم البحث

اقرأ أيضاً

209 - V. Fischer 2019
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements were averaged over thermal spectra and have significant disagreements, a differential measurement has been performed using a Time-Of-Flight neutron beam and a $sim$4$pi$ gamma spectrometer. A fit to the differential cross section from $0.015-0.15$,eV, assuming a $1/v$ energy dependence, yields $sigma^{2200} = 673 pm 26 text{ (stat.)} pm 59 text{ (sys.)}$,mb.
Alternative methods to calculate neutron capture cross sections on radioactive nuclei are reported using the theory of Inclusive Non-Elastic Breakup (INEB) developed by Hussein and McVoy [1]. The statistical coupled-channels theory proposed in Ref. [ 2] is further extended in the realm of random matrices. The case of reactions with the projectile and the target being two-cluster nuclei is also analyzed and applications are made for scattering from a deuteron target [3]. An extension of the theory to a three-cluster projectile incident on a two-cluster target is also discussed. The theoretical developments described here should open new possibilities to obtain information on the neutron capture cross sections of radioactive nuclei using indirect methods.
The $^{63}$Ni($n, gamma$) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellia n Averaged Cross Sections were calculated for thermal energies from kT = 5 keV to 100 keV with uncertainties around 20%. Stellar model calculations for a 25 M$_odot$ star show that the new data have a significant effect on the $s$-process production of $^{63}$Cu, $^{64}$Ni, and $^{64}$Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.
We investigated the probability distribution of the thermal neutron capture cross section ($sigma_{th}$) deduced stochastically with the resonance parameters randomly sampled from Wigner and Porter-Thomas distributions. We found that the typical prob ability distribution has an asymmetric shape. While there is a long tail on the large $sigma_{th}$ side due to a resonance happening to be close to the thermal energy, the multi-resonance contribution considerably reduces the probability on the small $sigma_{th}$ side. We also found that the probability distributions have a similar shape if nuclei have an average resonance spacing sufficiently larger than an average radiation width. We compared the typical probability distribution with the distribution of the experimental values of 193 nuclei, and found a good agreement between them.
Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$gamma$) cross section uncertainty. Method: The $^{243}$Am (n,$gamma$) cross section has been measured at the n_TOF facility at CERN with a BaF$_{2}$ Total Absorption Calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The $^{243}$Am(n,$gamma$) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature has been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the $^{243}$Am(n,$gamma$) cross section uncertainty and suggest that this cross section is underestimated up to 25% in the neutron energy range between 50 eV and a few keV in the present evaluated data libraries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا