ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-long life time for 2D cyclotron spin-flip excitons

53   0   0.0 ( 0 )
 نشر من قبل Sergey Dickmann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An experimental technique for the indirect manipulation and detection of electron spins entangled in two-dimensional magnetoexcitons has been developed. The kinetics of the spin relaxation has been investigated. Photoexcited spin-magnetoexcitons were found to exhibit extremely slow relaxation in specific quantum Hall systems, fabricated in high mobility GaAs/AlGaAs structures, namely, the relaxation time reaches values over one hundred microseconds. A qualitative explanation of this spin-relaxation kinetics is presented. Its temperature and magnetic field dependencies are discussed within the available theoretical framework.

قيم البحث

اقرأ أيضاً

231 - S. Dickmann , V.M. Zhilin 2008
We report on the calculation of the cyclotron spin-flip excitation (CSFE) in a spin-polarized quantum Hall system at unit filling. This mode has a double-exciton component which contributes to the CSFE correlation energy but can not be found by means of a mean field approach. The result is compared with available experimental data.
By doing quantum Monte Carlo ab initio simulations we show that dipolar excitons, which are now under experimental study, actually are strongly correlated systems. Strong correlations manifest in significant deviations of excitation spectra from the Bogoliubov one, large Bose condensate depletion, short-range order in the pair correlation function, and peak(s) in the structure factor.
CoO has an odd number of electrons in its unit cell, and therefore is expected to be metallic. Yet, CoO is strongly insulating owing to significant electronic correlations, thus classifying it as a Mott insulator. We investigate the magnetic fluctuat ions in CoO using neutron spectroscopy. The strong and spatially far-reaching exchange constants reported in [Sarte et al. Phys. Rev. B 98 024415 (2018)], combined with the single-ion spin-orbit coupling of similar magnitude [Cowley et al. Phys. Rev. B 88, 205117 (2013)] results in significant mixing between $j_{eff}$ spin-orbit levels in the low temperature magnetically ordered phase. The high degree of entanglement, combined with the structural domains originating from the Jahn-Teller structural distortion at $sim$ 300 K, make the magnetic excitation spectrum highly structured in both energy and momentum. We extend previous theoretical work on PrTl$_{3}$ [Buyers et al. Phys. Rev. B 11, 266 (1975)] to construct a mean-field and multi-level spin exciton model employing the aforementioned spin exchange and spin-orbit coupling parameters for coupled Co$^{2+}$ ions on a rocksalt lattice. This parameterization, based on a tetragonally distorted type-II antiferromagnetic unit cell, captures both the sharp low energy excitations at the magnetic zone center, and the energy broadened peaks at the zone boundary. However, the model fails to describe the momentum dependence of the excitations at high energy transfers, where the neutron response decays faster with momentum than the Co$^{2+}$ form factor. We discuss such a failure in terms of a possible breakdown of localized spin-orbit excitons at high energy transfers.
Excitons are elementary optical excitation in semiconductors. The ability to manipulate and transport these quasiparticles would enable excitonic circuits and devices for quantum photonic technologies. Recently, interlayer excitons in 2D semiconducto rs have emerged as a promising candidate for engineering excitonic devices due to long lifetime, large exciton binding energy, and gate tunability. However, the charge-neutral nature of the excitons leads to a weak response to the in-plane electric field and thus inhibits transport beyond the diffusion length. Here, we demonstrate the directional transport of interlayer excitons in bilayer WSe2 driven by the dynamic potential lattice induced by surface acoustic waves (SAW). We show that at 100 K, the SAW-driven excitonic transport is activated above a threshold acoustic power and reaches a distance at least ten times longer than the diffusion length, only limited by the device size. Temperature-dependent measurement reveals the transition from the diffusion-limited regime at low temperature to an acoustic field-driven regime at elevated temperature. Our work shows that acoustic waves are an effective, contact-free means to control exciton dynamics and transport, promising for realizing 2D materials-based excitonic devices such as exciton transistors, switches, and transducers.
The Bose condensation of 2D dipolar excitons in quantum wells is numerically studied by the diffusion Monte Carlo simulation method. The correlation, microscopic, thermodynamic, and spectral characteristics are calculated. It is shown that, in struct ures of coupled quantum wells, in which low-temperature features of exciton luminescence have presently been observed, dipolar excitons form a strongly correlated system. Their Bose condensation can experimentally be achieved much easily than for ideal or weakly correlated excitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا