ﻻ يوجد ملخص باللغة العربية
The precise measurement of cosmic-ray antiparticles serves as important means for identifying the nature of dark matter. Recent years showed that identifying the nature of dark matter with cosmic-ray positrons and higher energy antiprotons is difficult, and has lead to a significantly increased interest in cosmic-ray antideuteron searches. Antideuterons may also be generated in dark matter annihilations or decays, offering a potential breakthrough in unexplored phase space for dark matter. Low-energy antideuterons are an important approach because the flux from dark matter interactions exceeds the background flux by more than two orders of magnitude in the low-energy range for a wide variety of models. This review is based on the dbar14 - dedicated cosmic-ray antideuteron workshop, which brought together theorists and experimentalists in the field to discuss the current status, perspectives, and challenges for cosmic-ray antideuteron searches and discusses the motivation for antideuteron searches, the theoretical and experimental uncertainties of antideuteron production and propagation in our Galaxy, as well as give an experimental cosmic-ray antideuteron search status update. This report is a condensed summary of the article Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuteron (arXiv:1505.07785).
Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter search
In many cosmologies dark matter clusters on sub-kiloparsec scales and forms compact subhalos, in which the majority of Galactic dark matter could reside. Null results in direct detection experiments since their advent four decades ago could then be t
This report summarizes the present status of neutrino non-standard interactions (NSI). After a brief overview, several aspects of NSIs are discussed, including connection to neutrino mass models, model-building and phenomenology of large NSI with bot
Non-relativistic Dark Matter (DM) can be accelerated by scattering on high-energy cosmic-ray (CR) electrons. This process leads to a sub-population of relativistic or semi-relativistic DM which extends the experimental reach for direct detection in t
Report of the CF6 Working Group at Snowmass 2013. Topics addressed include ultra-high energy cosmic rays, neutrinos, gamma rays, baryogenesis, and experiments probing the fundamental nature of spacetime.