ﻻ يوجد ملخص باللغة العربية
Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 10$^{5}$ years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4% of the total energy production at 90% C.L.
The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos re
We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $sqrt{s} = 200$ GeV. The charged particle pairs produced in the rea
We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data co
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experi
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{mathrm{th}}$ nuclear reactors and detected by eight antineutrino detector