ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs Pair Production: Choosing Benchmarks With Cluster Analysis

36   0   0.0 ( 0 )
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

New physics theories often depend on a large number of free parameters. The precise values of those parameters in some cases drastically affect the resulting phenomenology of fundamental physics processes, while in others finite variations can leave it basically invariant at the level of detail experimentally accessible. When designing a strategy for the analysis of experimental data in the search for a signal predicted by a new physics model, it appears advantageous to categorize the parameter space describing the model according to the corresponding kinematical features of the final state. A multi-dimensional test statistic can be used to gauge the degree of similarity in the kinematics of different models; a clustering algorithm using that metric may then allow the division of the space into homogeneous regions, each of which can be successfully represented by a benchmark point. Searches targeting those benchmark points are then guaranteed to be sensitive to a large area of the parameter space. In this document we show a practical implementation of the above strategy for the study of non-resonant production of Higgs boson pairs in the context of extensions of the standard model with anomalous couplings of the Higgs bosons. A non-standard value of those couplings may significantly enhance the Higgs pair production cross section, such that the process could be detectable with the data that the Large Hadron Collider will collect in Run 2.

قيم البحث

اقرأ أيضاً

We investigate Higgs-boson pair production at the LHC when the final state system arises from decays of vector-like quarks coupling to the Higgs boson and the Standard Model quarks. Our phenomenological study includes next-to-leading-order QCD correc tions, which are important to guarantee accurate predictions, and focuses on a detailed analysis of a di-Higgs signal in the four $b$-jet channel. Whereas existing Run II CMS and ATLAS analyses are not specifically designed for probing non-resonant, vector-like-quark induced, di-Higgs production, we show that they nevertheless offer some potential for these modes. We then investigate the possibility of distinguishing between the various di-Higgs production mechanisms by exploiting the kinematic properties of the signal.
We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the Minimal Supersymmetric Standard Model. We present analytical expressions for the relevant amplitudes, including both quark and squar k loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large $tan beta$, neutral Higgs boson pair production might even be observable in the $4 b$ final state during the next run of the Tevatron collider.
In the framework of the simplest little Higgs model (SLHM), we study the production of a pair of neutral CP-even Higgs bosons at the LHC. First, we examine the production rate and find that it can be significantly larger than the SM prediction. Then we investigate the decays of the Higgs-pair and find that for a low Higgs mass their dominant decay mode is hh->etaetaetaeta (eta is a CP-odd scalar) while hh->bbar{b}etaeta and hh->etaeta WW may also have sizable ratios. Finally, we comparatively study the rates of pp-> hh -> bbar{b}tau^+ tau^-, pp->hh->bbar{b}gammagamma, and pp->hh->WWWW in the SLHM and the littlest Higgs models (LHT). We find that for a light Higgs, compared with the SM predictions, all the three rates can be sizably enhanced in the LHT but severely suppressed in the SLHM; while for an intermediately heavy Higgs, both the LHT and SLHM can enhance sizably the SM predictions.
We consider the current experimental constraints on the parameter space of the MSSM and NMSSM. Then in the allowed parameter space we examine the Higgs pair production at the 14 TeV LHC via $bbar{b}to hh$ ($h$ is the 125 GeV SM-like Higg boson) with one-loop SUSY QCD correction and compare it with the production via $ggto hh$. We obtain the following observations: (i) For the MSSM the production rate of $bbar{b} to hh$ can reach 50 fb and thus can be competitive with $gg to hh$, while for the NMSSM $bbar{b} to hh$ has a much smaller rate than $gg to hh$ due to the suppression of the $hbbar{b}$ coupling; (ii) The SUSY-QCD correction to $bbar{b} to hh$ is sizable, which can reach $45%$ for the MSSM and $15%$ for the NMSSM within the $1sigma$ region of the Higgs data; (iii) In the heavy SUSY limit (all soft mass parameters become heavy), the SUSY effects decouple rather slowly from the Higgs pair production (especially the $ggto hh$ process), which, for $M_{rm SUSY}=5$ TeV and $m_A<1$ TeV, can enhance the production rate by a factor of 1.5 and 1.3 for the MSSM and NMSSM, respectively. So, the Higgs pair production may be helpful for unraveling the effects of heavy SUSY.
292 - Julien Baglio 2016
Higgs pair production is one of the primary goals of the LHC program. Investigating the effects beyond the Standard Model (BSM) is then of high interest. Two cases are presented to exemplify the impact of BSM physics on Higgs pair production and on t he triple Higgs coupling: first a review on charged Higgs pair production mostly in the context of Two-Higgs-Doublet of type II and in particular the Minimal Supersymmetric SM, second a study of the one-loop effects of a heavy neutrino on the triple Higgs coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا