ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab-initio perspective on the Mollwo-Ivey relation for F-centers in alkali halides

165   0   0.0 ( 0 )
 نشر من قبل Franz Paul Tiwald
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the well-known Mollwo-Ivey relation that describes the universal dependence of the absorption energies of F-type color centers on the lattice constant $a$ of the alkali-halide crystals, $E_{mbox{abs}}propto a^{-n}.$ We perform both state-of-the-art ab-initio Quantum Chemistry and post-DFT calculations of F-center absorption spectra. By tuning independently the lattice constant and the atomic species we show that the scaling of the lattice constant alone (keeping the elements fixed) would yield $n=2$ in agreement with the particle-in-the-box model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent $n approx 1.8$.



قيم البحث

اقرأ أيضاً

The anomalous plasmon linewidth dispersion (PLD) measured in K by vom Felde, Sprosser-Prou, and Fink (Phys. Rev. B 40, 10181 (1989)), has been attributed to strong dynamical electron-electron correlations. On the basis of ab initio response calculati ons, and detailed comparison with experiment, we show that the PLD of K is, in fact, dominated by decay into particle-hole excitations involving empty states of d-symmetry. For Li, we shed new light on the physics of the PLD. Our all-electron results illustrate the importance of ab initio methods for the study of electronic excitations.
Favorable optoelectronic properties and ease of fabrication make NiO a promising hole transport layer for perovskite solar cells. To achieve maximum efficiency, the electronic levels of NiO need to be optimally aligned with those of the perovskite ab sorber. Applying surface modifiers by adsorbing species on the NiO surface, is one of the most widespread strategies to tune its energy levels. Alkali halides are simple inorganic surface modifiers that have been extensively used in organic optoelectronics, however, rarely studied in perovskite solar cells. Using density functional theory (DFT) calculations, we investigate the effect of single layer adsorption of twenty different alkali halides on the electronic levels of NiO. Our results show that alkali halides can shift the position of the valence band maximum (VBM) of NiO to a surprisingly large extend in both directions, from -3:10 eV to +1:59 eV. We interpret the direction and magnitude of the shift in terms of the surface dipoles, formed by the adsorbed cations and anions, where the magnitude of the VBM shift is a monotonic function of the surface coverage. Our results indicate that with alkali halide surface modifiers, the electronic levels of NiO can be tuned robustly and potentially match those of many perovskite compositions in perovskite solar cells.
Coherence and de-coherence are the most fundamental steps that follow the initial photo-excitation occurring in typical Pump&Probe experiments. Indeed, the initial external laser pulse transfers coherence to the system in terms of creation of multipl e electron-hole pairs excitation. The excitation concurs both to the creation of a finite carriers density and to the appearance of induced electromagnetic fields. The two effects, to a very first approximation, can be connected to the simple concepts of populations and oscillations. The dynamics of the system following the initial photo-excitation is, thus, entirely dictated by the interplay between coherence and de-coherence. This interplay and the de-coherence process itself, is due to the correlation effects stimulated by the photo-excitation. Single-particle, like the electron-phonon, and two-particles, like the electron-electron, scattering processes induce a complex dynamics of the electrons that, in turn, makes the description of the correlated and photo-excited system in terms of pure excitonic and/or carriers populations challenging.
The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO3, KNbO3, PbTiO3 and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their link with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study ferroelectric order when standard techniques to measure polarization are not easily applied.
210 - Hong-Jian Feng , Fa-Min Liu 2007
First-principles calculation predict that olivine Li4MnFeCoNiP4O16 has ferrotoroidic characteristic and ferrimagnetic configuration with magnetic moment of 1.56 muB per formula unit. The ferrotoroidicity of this material makes it a potential candidat e for magnetoelectric materials . Based on the orbital-resolved density of states for the transtion-metal ions in Li4MnFeCoNiP4O16, the spin configuration for Mn2+,Fe3+,Co2+, and Ni2+ is t2g3eg2, t2g3eg2,t2g1t2g3eg1eg2, and t2g2t2g3eg1eg2, respectively. Density functional theory plus U (DFT+U) shows a indirect band gap of 1.25 eV in this predicted material, which is not simply related to the electronic conductivity in terms of being used as cathode material in rechargeable Li-ion batteries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا