ﻻ يوجد ملخص باللغة العربية
We discuss the role of Poisson-Nijenhuis geometry in the definition of multiplicative integrable models on symplectic groupoids. These are integrable models that are compatible with the groupoid structure in such a way that the set of contour levels of the hamiltonians in involution inherits a topological groupoid structure. We show that every maximal rank PN structure defines such a model. We consider the examples defined on compact hermitian symmetric spaces and studied in [arXiv:1503.07339].
We study a class of Poisson-Nijenhuis systems defined on compact hermitian symmetric spaces, where the Nijenhuis tensor is defined as the composition of Kirillov-Konstant-Souriau symplectic form with the so called Bruhat-Poisson structure. We determi
We introduce Poisson double algebroids, and the equivalent concept of double Lie bialgebroid, which arise as second-order infinitesimal counterparts of Poisson double groupoids. We develop their underlying Lie theory, showing how these objects are re
An algebra isomorphism between algebras of matrices and difference operators is used to investigate the discrete integrable hierarchy. We find local and non-local families of R-matrix solutions to the modified Yang-Baxter equation. The three R-theore
We introduce Lie-Nijenhuis bialgebroids as Lie bialgebroids endowed with an additional derivation-like object. They give a complete infinitesimal description of Poisson-Nijenhuis groupoids, and key examples include Poisson-Nijenhuis manifolds, holomo
We generalize the notion of weight for Gelfand-Fuks cohomology theory of symplectic vector spaces to the homogeneous Poisson vector spaces, and try some combinatorial approach to Poisson cohomology groups.