ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on New formulas for the (-2) moment of the photoabsorption cross section, sigma_(-2)

345   0   0.0 ( 0 )
 نشر من قبل Peter von Neumann-Cosel
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Empirical formulas for the second inverse moment of the photoabsorption cross sections in nuclei are discussed in J. N. Orce, Phys. Rev. C 91, 064602 (2015). In this Comment I point out that the experimental values used are systematically too small in heavy nuclei by about 10% because of the neglection of the E1 strength below the neutron threshold. Furthermore, combining recently deduced values of the polarizability in heavy and total photoabsorption data in light nuclei it is demonstrated that the mass number dependence of sigma_(-2) is sensitive to the ratio of volume and surface coefficients of the symmetry energy and parameters different to the ones chosen by Orce may be better suited.

قيم البحث

اقرأ أيضاً

An improved procedure is suggested for finding the total photoabsorption cross section on the neutron from data on the deuteron at energies < 1.5 GeV. It includes unfolding of smearing effects caused by Fermi motion of nucleons in the deuteron and al so takes into account non-additive contributions to the deuteron cross section due to final-state interactions of particles in single and double pion photoproduction. This procedure is applied to analysis of existing data.
158 - H.P. Blok , T. Horn , G.M. Huber 2008
Cross sections for the reaction ${^1}$H($e,epi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data we re taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2.45 GeV$^2$ at an invariant mass of the virtual photon-nucleon system of $W$=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions $sigma_L$, $sigma_T$, $sigma_{LT}$, and $sigma_{TT}$. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable $t$ at the different values of $Q^2$ are presented. Some global features of the data are discussed, and the data are compared with the results of some model calculations for the reaction ${^1}$H($e,epi^+$)$n$.
New results on the single-differential and fully-integrated cross sections for the process $gamma_{v} p rightarrow p pi^{+} pi^{-}$ are presented. The experimental data were collected with the CLAS detector at Jefferson Laboratory. Measurements were carried out in the kinematic region of the reaction invariant mass $W$ from 1.3 to 1.825 GeV and the photon virtuality $Q^2$ from 0.4 to 1.0 GeV$^2$. The cross sections were obtained in narrow $Q^{2}$ bins (0.05 GeV$^{2}$) with the smallest statistical uncertainties achieved in double-pion electroproduction experiments to date. The results were found to be in agreement with previously available data where they overlap. A preliminary interpretation of the extracted cross sections, which was based on a phenomenological meson-baryon reaction model, revealed substantial relative contributions from nucleon resonances. The data offer promising prospects to improve knowledge on the $Q^{2}$-evolution of the electrocouplings of most resonances with masses up to $sim$1.8 GeV.
The updated results of the precise measurements of the processes e+e-->rho->pi+pi-, e+e-->omega->pi+pi-pi0 and e+e-->phi->KLKS performed by the CMD-2 collaboration are presented. The update appeared necessary due an overestimate of the integrated luminosity in previous analyses.
209 - V. Fischer 2019
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements were averaged over thermal spectra and have significant disagreements, a differential measurement has been performed using a Time-Of-Flight neutron beam and a $sim$4$pi$ gamma spectrometer. A fit to the differential cross section from $0.015-0.15$,eV, assuming a $1/v$ energy dependence, yields $sigma^{2200} = 673 pm 26 text{ (stat.)} pm 59 text{ (sys.)}$,mb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا