ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting transistors: A boost for quantum computing

201   0   0.0 ( 0 )
 نشر من قبل Francesco Giazotto
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Giazotto




اسأل ChatGPT حول البحث

A niobium titanite nitride-based superconducting nanodevice in which the Josephson critical current can be modulated by a gate voltage - a Cooper-pair transistor - has proven a remarkably long parity lifetime exceeding one minute at temperatures close to absolute zero.



قيم البحث

اقرأ أيضاً

Here we report the fabrication and characterization of fully superconducting quantum interference proximity transistors (SQUIPTs) based on the implementation of vanadium (V) in the superconducting loop. At low temperature, the devices show high flux- to-voltage (up to 0.52$ textrm{mV}/Phi_0$) and flux-to-current (above 12$ textrm{nA}/Phi_0$) transfer functions, with the best estimated flux sensitivity $sim$2.6$ muPhi_0/sqrt{textrm{Hz}}$ reached under fixed voltage bias, where $Phi_0$ is the flux quantum. The interferometers operate up to $T_textrm{bath}simeq$ 2 $ textrm{K}$, with an improvement of 70$%$ of the maximal operating temperature with respect to early SQUIPTs design. The main features of the V-based SQUIPT are described within a simplified theoretical model. Our results open the way to the realization of SQUIPTs that take advantage of the use of higher-gap superconductors for ultra-sensitive nanoscale applications that operate at temperatures well above 1 K.
252 - J. Yu , J. C. Retamal , M. Sanz 2021
We propose a superconducting circuit architecture suitable for digital-analog quantum computing (DAQC) based on an enhanced NISQ family of nearest-neighbor interactions. DAQC makes a smart use of digital steps (single qubit rotations) and analog bloc ks (parametrized multiqubit operations) to outperform digital quantum computing algorithms. Our design comprises a chain of superconducting charge qubits coupled by superconducting quantum interference devices (SQUIDs). Using magnetic flux control, we can activate/deactivate exchange interactions, double excitation/de-excitations, and others. As a paradigmatic example, we present an efficient simulation of an $elltimes h$ fermion lattice (with $2<ell leq h$), using only $2(2ell+1)^2+24$ analog blocks. The proposed architecture design is feasible in current experimental setups for quantum computing with superconducting circuits, opening the door to useful quantum advantage with fewer resources.
The boundary of topological superconductors might lead to the appearance of Majorana edge modes, whose non-trivial exchange statistics can be used for topological quantum computing. In branched nanowire networks one can exchange Majorana states by ti me-dependently tuning topologically non-trivial parameter regions. In this work, we simulate the exchange of four Majorana modes in T-shaped junctions made out of p-wave superconducting Rashba wires. We derive concrete experimental predictions for (quasi-)adiabatic braiding times and determine geometric conditions for successful Majorana exchange processes. Contrary to the widespread opinion, we show for the first time that in the adiabatic limit the gating time needs to be smaller than the inverse of the squared superconducting order parameter and scales linearly with the gating potential. Further, we show how to circumvent the formation of additional Majorana modes in branched nanowire systems, arising at wire intersection points of narrow junctions. Finally, we propose a multi qubit setup, which allows for universal and in particular topologically protected quantum computing.
We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch b etween the two resonators, which are assumed to be originally independent. In this three-circuit network, the qubit mediates a geometric second-order circuit interaction between the otherwise decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-order perturbative interaction. The geometric and dynamic coupling strengths can be tuned to be equal, thus permitting to switch on and off the interaction between the two resonators via a qubit population inversion or a shifting of the qubit operation point. We also show that our quantum switch represents a flexible architecture for the manipulation and generation of nonclassical microwave field states as well as the creation of controlled multipartite entanglement in circuit QED. In addition, we clarify the role played by the geometric interaction, which constitutes a fundamental property characteristic of superconducting quantum circuits without counterpart in quantum-optical systems. We develop a detailed theory of the geometric second-order coupling by means of circuit transformations for superconducting charge and flux qubits. Furthermore, we show the robustness of the quantum switch operation with respect to decoherence mechanisms. Finally, we propose a realistic design for a two-resonator circuit QED setup based on a flux qubit and estimate all the related parameters. In this manner, we show that this setup can be used to implement a superconducting quantum switch with available technology.
Spectroscopy is a powerful tool to probe physical, chemical, and biological systems. Recent advances in microfabrication have introduced novel, intriguing mesoscopic quantum systems including superconductor-semiconductor hybrid devices and topologica lly non-trivial electric circuits. A sensitive, general purpose spectrometer to probe the energy levels of these systems is lacking. We propose an on-chip absorption spectrometer functioning well into the millimeter wave band which is based on a voltage-biased superconducting quantum interference device. We demonstrate the capabilities of the spectrometer by coupling it to a variety of superconducting systems, probing phenomena such as quasiparticle and plasma excitations. We perform spectroscopy of a microscopic tunable non-linear resonator in the 40-50 GHz range and measure transitions to highly excited states. The Josephson junction spectrometer, with unprecedented frequency range, sensitivity, and coupling strength will enable new experiments in linear and non-linear spectroscopy of novel mesoscopic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا