ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of non-isolated asymptotic profiles for fast diffusion

172   0   0.0 ( 0 )
 نشر من قبل Goro Akagi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Goro Akagi




اسأل ChatGPT حول البحث

The stability of asymptotic profiles of solutions to the Cauchy-Dirichlet problem for Fast Diffusion Equation (FDE, for short) is discussed. The main result of the present paper is the stability of any asymptotic profiles of least energy. It is noteworthy that this result can cover non-isolated profiles, e.g., those for thin annular domain cases. The method of proof is based on the Lojasiewicz-Simon inequality, which is usually used to prove the convergence of solutions to prescribed limits, as well as a uniform extinction estimate for solutions to FDE. Besides, local minimizers of an energy functional associated with this issue are characterized. Furthermore, the instability of positive radial asymptotic profiles in thin annular domains is also proved by applying the Lojasiewicz-Simon inequality in a different way.



قيم البحث

اقرأ أيضاً

The Persistent Turning Walker Model (PTWM) was introduced by Gautrais et al in Mathematical Biology for the modelling of fish motion. It involves a nonlinear pathwise functional of a non-elliptic hypo-elliptic diffusion. This diffusion solves a kinet ic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian process. The long time diffusive behavior of this model was recently studied by Degond & Motsch using partial differential equations techniques. This model is however intrinsically probabilistic. In the present paper, we show how the long time diffusive behavior of this model can be essentially recovered and extended by using appropriate tools from stochastic analysis. The approach can be adapted to many other kinetic probabilistic models.
We consider the Cauchy problem for the Gross-Pitaevskii (GP) equation. Using the DBAR generalization of the nonlinear steepest descent method of Deift and Zhou we derive the leading order approximation to the solution of the GP in the solitonic regio n of space time $|x| < 2t$ for large times and provide bounds for the error which decay as $t to infty$ for a general class of initial data whose difference from the non-vanishing background possesss a fixed number of finite moments and derivatives. Using properties of the scattering map for (GP) we derive as a corollary an asymptotic stability result for initial data which are sufficiently close to the N-dark soliton solutions of (GP).
198 - Said Benachour 2007
The large time behavior of zero mass solutions to the Cauchy problem for a convection-diffusion equation. We provide conditions on the size and shape of the initial datum such that the large time asymptotics of solutions is given either by the deriva tive of the Guass-Weierstrass kernel or by a self-similar solution or by a hyperbolic N-wave
The Cauchy problem of the modified nonlinear Schr{o}dinger (mNLS) equation with the finite density type initial data is investigated via $overline{partial}$ steepest descent method. In the soliton region of space-time $x/tin(5,7)$, the long-time asym ptotic behavior of the mNLS equation is derived for large times. Furthermore, for general initial data in a non-vanishing background, the soliton resolution conjecture for the mNLS equation is verified, which means that the asymptotic expansion of the solution can be characterized by finite number of soliton solutions as the time $t$ tends to infinity, and a residual error $mathcal {O}(t^{-3/4})$ is provided.
In this paper we consider a family of three-dimensional problems in thermoelasticity for linear elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero.We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا