ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant and inelastic Andreev tunneling observed on a carbon nanotube quantum dot

186   0   0.0 ( 0 )
 نشر من قبل Andreas Baumgartner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of two fundamental sub-gap transport processes through a quantum dot (QD) with a superconducting contact. The device consists of a carbon nanotube contacted by a Nb superconducting and a normal metal contact. First, we find a single resonance with position, shape and amplitude consistent with the theoretically predicted resonant Andreev tunneling (AT) through a single QD level. Second, we observe a series of discrete replicas of resonant AT at a separation of $sim145,mu$eV, with a gate, bias and temperature dependence characteristic for boson-assisted, inelastic AT, in which energy is exchanged between a bosonic bath and the electrons. The magnetic field dependence of the replicas amplitudes and energies suggest that two different bosons couple to the tunnel process.



قيم البحث

اقرأ أيضاً

102 - A. Kumar , M. Gaim , D. Steininger 2013
Tunneling spectroscopy of a Nb coupled carbon nanotube quantum dot reveals the formation of pairs of Andreev bound states (ABS) within the superconducting gap. A weak replica of the lower ABS is found, which is generated by quasi-particle tunnelling from the ABS to the Al tunnel probe. An inversion of the ABS-dispersion is observed at elevated temperatures, which signals the thermal occupation of the upper ABS. Our experimental findings are well supported by model calculations based on the superconducting Anderson model.
We have studied electron transport in clean single-walled carbon nanotube quantum dots. Because of the large number of Coulomb blockade diamonds simultaneously showing both shell structure and Kondo effect, we are able to perform a detailed analysis of tunneling renormalization effects. Thus determining the environment induced level shifts of this artificial atom. In shells where only one of the two orbitals is coupled strongly, we observe a marked asymmetric gate-dependence of the inelastic cotunneling lines together with a systematic gate dependence of the size (and shape) of the Coulomb diamonds. These effects are all given a simple explanation in terms of second-order perturbation theory in the tunnel coupling.
Illumination of atoms by resonant lasers can pump electrons into a coherent superposition of hyperfine levels which can no longer absorb the light. Such superposition is known as dark state, because fluorescent light emission is then suppressed. Here we report an all-electric analogue of this destructive interference effect in a carbon nanotube quantum dot. The dark states are a coherent superposition of valley (angular momentum) states which are decoupled from either the drain or the source leads. Their emergence is visible in asymmetric current-voltage characteristics, with missing current steps and current suppression which depend on the polarity of the applied source-drain bias. Our results demonstrate for the first time coherent-population trapping by all-electric means in an artificial atom.
We systematically study the coupling of longitudinal modes (shells) in a carbon nanotube quantum dot. Inelastic cotunneling spectroscopy is used to probe the excitation spectrum in parallel, perpendicular and rotating magnetic fields. The data is com pared to a theoretical model including coupling between shells, induced by atomically sharp disorder in the nanotube. The calculated excitation spectra show good correspondence with experimental data.
A top-gated single wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double and triple quantum dot stability diagrams. Simulations using a capacitor model including tunnel coupling between neighboring dots captures the observed behavior with good agreement. Furthermore, anti-crossings between indirectly coupled levels and higher order cotunneling are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا