ترغب بنشر مسار تعليمي؟ اضغط هنا

Spacetime diamonds

37   0   0.0 ( 0 )
 نشر من قبل Daiqin Su
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the particle-number distribution of diamond modes, modes that are localized in a finite space-time region, are thermal for the Minkowski vacuum state of a massless scalar field, an analogue to the Unruh effect. The temperature of the diamond is inversely proportional to its size. An inertial observer can detect this thermal radiation by coupling to the diamond modes using an appropriate energy-scaled detector. We further investigate the correlations between various diamonds and find that entanglement between adjacent diamonds dominates.

قيم البحث

اقرأ أيضاً

Refraction, interference, and diffraction serve as distinguishing features for wave-like phenomena. While they are normally associated only with a purely spatial wave-propagation pattern, analogs to interference and diffraction involving the spatio-t emporal dynamics of waves in one dimension (1D) have been pointed out. Here we complete the triplet of analogies by discussing how spatio-temporal analogs to refraction are exhibited by a quantum particle in 1D that is scattering off a step barrier. Similarly, birefringence in spacetime occurs for a spin-1/2 particle in a magnetic field. These examples serve to illustrate basics of quantum time evolution from a new perspective.
We propose a formulation of quantum mechanics in an extended Fock space in which a tensor product structure is applied to time. Subspaces of histories consistent with the dynamics of a particular theory are defined by a direct quantum generalization of the corresponding classical action. The diagonalization of such quantum actions enables us to recover the predictions of conventional quantum mechanics and reveals an extended unitary equivalence between all physical theories. Quantum correlations and coherent effects across time and between distinct theories acquire a rigorous meaning, which is encoded in the rich temporal structure of physical states. Connections with modern relativistic schemes and the path integral formulation also emerge.
The effect of Hawking radiation on the redistribution of the entanglement and mutual information in the Schwarzschild spacetime is investigated. Our analysis shows that the physically accessible correlations degrade while the unaccessible correlation s increase as the Hawking temperature increases because the initial correlations described by inertial observers are redistributed between all the bipartite modes. It is interesting to note that, in the limit case that the temperature tends to infinity, the accessible mutual information equals to just half of its initial value, and the unaccessible mutual information between mode $A$ and $II$ also equals to the same value.
A boundary undergoing relativistic motion can create particles from quantum vacuum fluctuations in a phenomenon known as the dynamical Casimir effect. We examine the creation of particles, and more generally the transformation of quantum field states , due to boundary motion in curved spacetime. We provide a novel method enabling the calculation of the effect for a wide range of trajectories and spacetimes. We apply this to the experimental scenario used to detect the dynamical Casimir effect, now adopting the Schwarzschild metric, and find novel resonances in particle creation as a result of the spacetime curvature. Finally, we discuss a potential enhancement of the effect for the phonon field of a Bose-Einstein condensate.
Although the path-integral formalism is known to be equivalent to conventional quantum mechanics, it is not generally obvious how to implement path-based calculations for multi-qubit entangled states. Whether one takes the formal view of entangled st ates as entities in a high-dimensional Hilbert space, or the intuitive view of these states as a connection between distant spatial configurations, it may not even be obvious that a path-based calculation can be achieved using only paths in ordinary space and time. Previous work has shown how to do this for certain special states; this paper extends those results to all pure two-qubit states, where each qubit can be measured in an arbitrary basis. Certain three-qubit states are also developed, and path integrals again reproduce the usual correlations. These results should allow for a substantial amount of conventional quantum analysis to be translated over into a path-integral perspective, simplifying certain calculations, and more generally informing research in quantum foundations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا