ﻻ يوجد ملخص باللغة العربية
We consider a model of a population of fixed size $N$ undergoing selection. Each individual acquires beneficial mutations at rate $mu_N$, and each beneficial mutation increases the individuals fitness by $s_N$. Each individual dies at rate one, and when a death occurs, an individual is chosen with probability proportional to the individuals fitness to give birth. Under certain conditions on the parameters $mu_N$ and $s_N$, we show that the genealogy of the population can be described by the Bolthausen-Sznitman coalescent. This result confirms predictions of Desai, Walczak, and Fisher (2013), and Neher and Hallatschek (2013).
We consider a model of a population of fixed size $N$ undergoing selection. Each individual acquires beneficial mutations at rate $mu_N$, and each beneficial mutation increases the individuals fitness by $s_N$. Each individual dies at rate one, and w
We investigate the behaviour of the genealogy of a Wright-Fisher population model under the influence of a strong seed-bank effect. More precisely, we consider a simple seed-bank age distribution with two atoms, leading to either classical or long ge
We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics.
We use a simple N-player stochastic game with idiosyncratic and common noises to introduce the concept of Master Equation originally proposed by Lions in his lectures at the Coll`ege de France. Controlling the limit N tends to the infinity of the exp
A stochastic model of susceptible/infected/removed (SIR) type, inspired by COVID-19, is introduced for the spread of infection through a spatially-distributed population. Individuals are initially distributed at random in space, and they move continu