ﻻ يوجد ملخص باللغة العربية
We report on the measurement of ground state atomic polarization relaxation tile of Rb vapor confined in five different hypocycloidal core shape Kagome hollow core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in optical waveguide and deduce the contribution of the atoms dwell time at the core wall surface. In contrast with convetional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by the atom-wall collisional relaxation from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core Kagome Hollow-Core Photonic Crystal Fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a
The absolute frequency of the $^{87}{rm Sr}$ clock transition measured in 2015 was reevaluated using an improved frequency link to the SI second. The scale interval of International Atomic Time (TAI) that we used as the reference was calibrated for a
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms ^{87}Rb, ^{133}Cs, ^{211}Fr and alkali-metal-like ions ^{135}Ba^+, ^{225}Ra^+, which are of particular interest for parity violation studies. The quantum
Alkali-filled hollow-core fibres are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption. H
We measure the interspecies interaction strength between $^7$Li and $^{87}$Rb atoms through cross-dimensional relaxation of two-element gas mixtures trapped in a spherical quadrupole magnetic trap. We record the relaxation of an initial momentum-spac