ترغب بنشر مسار تعليمي؟ اضغط هنا

Unifying local and average structure in the phase change material GeTe

133   0   0.0 ( 0 )
 نشر من قبل Simon Kimber Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The prototypical phase change material GeTe shows an enigmatic phase transition at Tc ca. 650 K from rhombohedral (R3m) to cubic (Fm-3m) symmetry. While local probes see little change in bonding, in contrast, average structure probes imply a displacive transition. Here we use high energy X-ray scattering to develop a model consistent with both the local and average structure pictures. We detect a correlation length for domains of the R3m structure which shows power law decay upon heating. Unlike a classical soft mode, it saturates at ca. 20 {AA} above Tc. These nanoclusters are too small to be observed by standard diffraction techniques, yet contain the same local motif as the room temperature structure, explaining previous discrepancies. Finally, a careful analysis of the pair distribution functions implies that the 0.6 % negative thermal expansion (NTE) at the R3m -Fm-3m transition is associated with the loss of coherence between these domains.



قيم البحث

اقرأ أيضاً

Oxygen is widely used to tune the performance of chalcogenide phase-change materials in the usage of phase-Change random access memory (PCRAM) which is considered as the most promising next-generation non-volatile memory. However, the microscopic rol e of oxygen in the write-erase process, i.e., the reversible phase transition between crystalline and amorphous state of phase-change materials is not clear yet. Using oxygen doped GeTe as an example, this work unravels the role of oxygen at the atomic scale by means of ab initio total energy calculations and ab initio molecular dynamics simulations. Our main finding is that after the amorphization and the subsequent re-crystallization process simulated by ab initio molecular dynamics, oxygen will drag one Ge atom out of its lattice site and both atoms stay in the interstitial region near the Te vacancy that was originally occupied by the oxygen, forming a dumbbell-like defect (O-VTe-Ge), which is in sharp contrast to the results of ab initio total energy calculations at 0 K showing that the oxygen prefers to substitute Te in crystalline GeTe. This specific defect configuration is found to be responsible for the slower crystallization speed and hence the improved data retention of oxygen doped GeTe as reported in recent experimental work. Moreover, we find that the oxygen will increase the effective mass of the carrier and thus increases the resistivity of GeTe. Our results unravel the microscopic mechanism of the oxygen-doping optimization of phase-change material GeTe, and the present reported mechanism can be applied to other oxygen doped ternary chalcogenide phase-change materials.
142 - Gabriele C. Sosso 2012
GeTe is a prototypical phase change material of high interest for applications in optical and electronic non-volatile memories. We present an interatomic potential for the bulk phases of GeTe, which is created using a neural network (NN) representati on of the potential-energy surface obtained from reference calculations based on density functional theory. It is demonstrated that the NN potential provides a close to ab initio quality description of a number of properties of liquid, crystalline and amorphous GeTe. The availability of a reliable classical potential allows addressing a number of issues of interest for the technological applications of phase change materials, which are presently beyond the capability of first principles molecular dynamics simulations.
Revealing the bonding and time-evolving atomic dynamics in functional materials with complex lattice structures can update the fundamental knowledge on rich physics therein, and also help to manipulate the material properties as desired. As the most prototypical chalcogenide phase change material, Ge2Sb2Te5 has been widely used in optical data storage and non-volatile electric memory due to the fast switching speed and the low energy consumption. However, the basic understanding of the structural dynamics on the atomic scale is still not clear. Using femtosecond electron diffraction and TDDFT-MD simulation, we reveal the photoinduced ultrafast transition of the correlated local structure in the averaged rock-salt phase of Ge2Sb2Te5. The ultrafast suppression of the local Peierls distortions gives rise to a local structure change from the rhombohedral to the cubic geometry within ~ 0.3 ps. Our work provides new microscopic insights into contributions of the correlated local structure to the transient structural and optical responses in phase change materials. Moreover, we stress the significance of femtosecond electron diffraction in revealing the correlated local structure in the subunit cell and the link between the correlated disorder and physical properties in functional materials with complex microstructures.
Fast and reversible phase transitions in chalcogenide phase-change materials (PCMs), in particular, Ge-Sb-Te compounds, are not only of fundamental interests, but also make PCMs based random access memory (PRAM) a leading candidate for non-volatile m emory and neuromorphic computing devices. To RESET the memory cell, crystalline Ge-Sb-Te has to undergo phase transitions firstly to a liquid state and then to an amorphous state, corresponding to an abrupt change in electrical resistance. In this work, we demonstrate a progressive amorphization process in GeSb2Te4 thin films under electron beam irradiation on transmission electron microscope (TEM). Melting is shown to be completely absent by the in situ TEM experiments. The progressive amorphization process resembles closely the cumulative crystallization process that accompanies a continuous change in electrical resistance. Our work suggests that if displacement forces can be implemented properly, it should be possible to emulate symmetric neuronal dynamics by using PCMs.
We examine the ultrafast optical response of the crystalline and amorphous phases of the phase change material Ge$_2$Sb$_2$Te$_5$ below the phase transformation threshold. Simultaneous measurement of the transmissivity and reflectivity of thin film s amples yields the time-dependent evolution of the dielectric function for both phases. We then identify how lattice motion and electronic excitation manifest in the dielectric response. The dielectric response of both phases is large but markedly different. At 800 nm, the changes in amorphous GST are well described by the Drude response of the generated photo-carriers, whereas the crystalline phase is better described by the depopulation of resonant bonds. We find that the generated coherent phonons have a greater influence in the amorphous phase than the crystalline phase. Furthermore, coherent phonons do not influence resonant bonding. For fluences up to 50% of the transformation threshold, the structure does not exhibit bond softening in either phase, enabling large changes of the optical properties without structural modification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا