ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion

135   0   0.0 ( 0 )
 نشر من قبل Jon Mauerhan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present seven epochs of spectropolarimetry of the Type IIb supernova (SN) 2011dh in M51, spanning 86 days of its evolution. The first epoch was obtained 9 days after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P~0.5% through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H-alpha and HeI polarization peak after 30 days and exhibit position angles roughly aligned with the earlier continuum, while OI and CaII appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other Type IIb supernovae.

قيم البحث

اقرأ أيضاً

We present the detection of the progenitor of the Type II SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the SN in the pre-explosion images was determined to within 23mas. The progenitor object was found to be consistent with a F8 supergiant star (log L/L_{odot}=4.92+/-0.20 and T_{eff}=6000+/-280K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M_{ZAMS}=13+/-3M_{odot}. The possibility of the progenitor source being a cluster is rejected, on the basis of: 1) the source is not spatially extended; 2) the absence of excess Halpha, emission; and 3) the poor fit to synthetic cluster SEDs. It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax, and suggest that a large amount of the progenitors hydrogen envelope was removed before explosion.
We present optical and near-infrared observations of the rapidly evolving supernova (SN) 2017czd that shows hydrogen features. The optical light curves exhibit a short plateau phase ($sim 13$ days in the $R$-band) followed by a rapid decline by $4.5$ mag in $sim 20 mathrm{days}$ after the plateau. The decline rate is larger than those of any standard SNe, and close to those of rapidly evolving transients. The peak absolute magnitude is $-16.8$ mag in the $V$-band, which is within the observed range for SNe IIP and rapidly evolving transients. The spectra of SN 2017czd clearly show the hydrogen features and resemble those of SNe IIP at first. The H$alpha$ line, however, does not evolve much with time and it becomes similar to those in SNe IIb at decline phase. We calculate the synthetic light curves using a SN IIb progenitor which has 16 M$_{odot}$ at the zero-age main sequence and evolves in a binary system. The model with a low explosion energy ($5times 10^{50}$ erg) and a low ${}^{56}$Ni mass ($0.003 mathrm{M}_{odot}$) can reproduce the short plateau phase as well as the sudden drop of the light curve as observed in SN 2017czd. We conclude that SN 2017czd might be the first identified weak explosion from a SN IIb progenitor. We suggest that some rapidly evolving transients can be explained by such a weak explosion of the progenitors with little hydrogen-rich envelope.
CCD UBVRI photometry is presented for type IIb SN 2011dh for about 300 days. The main photometric parameters are derived and the comparison with SNe of similar types is reported. The light curves are similar to those for SN IIb 2008ax, but the initia l flash is stronger and very short, and there are humps on the light curves in U and B at the onset of linear decline. Preliminary modeling is carried out, and the results are compared to the quasi-bolometric light curve and to the light curves in UBVRI bands.
We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2,000 Angstroms in the UV to 2.4 microns in the NIR. Optical spectra provide line profiles and velocity measurements of HI, HeI, CaII and FeII that trace the composition and kinematics of the SN. NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the STIS reveals that the UV flux for SN 2011dh is low compared to other SN IIb. The HI and HeI velocities in SN 2011dh are separated by about 4,000 km/s at all phases. We estimate that the H-shell of SN 2011dh is about 8 times less massive than the shell of SN 1993J and about 3 times more massive than the shell of SN 2008ax. Light curves (LC) for twelve passbands are presented. The maximum bolometric luminosity of $1.8 pm 0.2 times 10^{42}$ erg s$^{-1}$ occurred about 22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations and increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9 and 1% on day 34. We compare the bolometric light curves of SN 2011dh, SN 2008ax and SN 1993J. The LC are very different for the first twelve days after the explosions but all three SN IIb display similar peak luminosities, times of peak, decline rates and colors after maximum. This suggests that the progenitors of these SN IIb may have had similar compositions and masses but they exploded inside hydrogen shells that that have a wide range of masses. The detailed observations presented here will help evaluate theoretical models for this supernova and lead to a better understanding of SN IIb.
On May 31, 2011 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras, as well as by the Palomar Transient Factory (PTF) survey, and rapidly confirmed i t to be a Type II supernova. Our early light curve and spectroscopy indicates that PTF11eon resulted from the explosion of a relatively compact progenitor star as evidenced by the rapid shock-breakout cooling seen in the light curve, the relatively low temperature in early-time spectra and the prompt appearance of low-ionization spectral features. The spectra of PTF11eon are dominated by H lines out to day 10 after explosion, but initial signs of He appear to be present. Assuming that He lines continue to develop in the near future, this SN is likely a member of the cIIb (compact IIb; Chevalier and Soderberg 2010) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~10^13 cm) would be highly inconsistent with constraints from our post-explosion photometric and spectroscopic data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا