ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative renormalization group calculation of the quasi-particle velocity and the dielectric function of graphene

152   0   0.0 ( 0 )
 نشر من قبل Carsten Bauer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a non-perturbative functional renormalization group approach we calculate the renormalized quasi-particle velocity $v (k)$ and the static dielectric function $epsilon ( k )$ of suspended graphene as functions of an external momentum $k$. Our numerical result for $v (k )$ can be fitted by $v ( k ) / v_F = A + B ln ( Lambda_0 / k )$, where $v_F$ is the bare Fermi velocity, $Lambda_0$ is an ultraviolet cutoff, and $A = 1.37$, $B =0.51$ for the physically relevant value ($e^2/v_F =2.2$) of the coupling constant. In contrast to calculations based on the static random-phase approximation, we find that $epsilon (k )$ approaches unity for $k rightarrow 0$. Our result for $v (k )$ agrees very well with a recent measurement by Elias et al. [Nat. Phys. 7, 701 (2011)].

قيم البحث

اقرأ أيضاً

73 - A. Rancon 2014
We present a Lattice Non-Perturbative Renormalization Group (NPRG) approach to quantum XY spin models by using a mapping onto hardcore bosons. The NPRG takes as initial condition of the renormalization group flow the (local) limit of decoupled sites, allowing us to take into account the hardcore constraint exactly. The initial condition of the flow is equivalent to the large $S$ classical results of the corresponding spin system. Furthermore, the hardcore constraint is conserved along the RG flow, and we can describe both local and long-distance fluctuations in a non-trivial way. We discuss a simple approximation scheme, and solve the corresponding flow equations. We compute both the zero-temperature thermodynamics and the finite temperature phase diagram on the square and cubic lattices. The NPRG allows us to recover the correct critical physics at finite temperature in two and three dimensions. The results compare well with numerical simulations.
In this paper we study the $c$-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the $c$-function along trajectories of the non-perturbative renormalization group flow gi ves access to the central charges of the model in the fixed points. The results at vanishing frequency $beta^2$, where the periodicity does not play a role, are retrieved and the independence on the cutoff regulator for small frequencies is discussed. Our findings show that the central charge obtained integrating the trajectories starting from the repulsive low-frequencies fixed points ($beta^2 <8pi$) to the infrared limit is in good quantitative agreement with the expected $Delta c=1$ result. The behavior of the $c$-function in the other parts of the flow diagram is also discussed. Finally, we point out that also including higher harmonics in the renormalization group treatment at the level of local potential approximation is not sufficient to give reasonable results, even if the periodicity is taken into account. Rather, incorporating the wave-function renormalization (i. e. going beyond local potential approximation) is crucial to get sensible results even when a single frequency is used.
172 - A. Rancon , N. Dupuis 2010
We present a non-perturbative renormalization-group approach to the Bose-Hubbard model. By taking as initial condition of the RG flow the (local) limit of decoupled sites, we take into account both local and long-distance fluctuations in a nontrivial way. This approach yields a phase diagram in very good quantitative agreement with the quantum Monte Carlo results and reproduces the two universality classes of the superfluid--Mott-insulator transition with a good estimate of the critical exponents. Furthermore, it reveals the crucial role of the Ginzburg length as a crossover length between a weakly- and a strongly-correlated superfluid phase.
322 - Bertram Klein 2007
The phase diagram of QCD at finite temperature and density and the existence of a critical point are currently very actively researched topics. Although tremendous progress has been made, in the case of two light quark flavors even the order of the p hase transition at zero density is still under discussion. Finite-size scaling is a powerful method for the analysis of phase transitions in lattice QCD simulations. From the scaling behavior, critical exponents can be tested and the order as well as the universality class of a phase transition can be established. This requires knowledge of the critical exponents and the scaling behavior. We use a non-perturbative Renormalization Group method to obtain critical exponents and the finite-size scaling functions for the O(4) universality class in three dimensions. These results are useful for a comparison to the actual scaling behavior in lattice QCD simulations with two flavors, as well as for an estimate of the size of the scaling region and the deviations from the expected scaling behavior.
219 - N. Dupuis , K. Sengupta 2008
The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow e quations and obtain the renormalized dispersion $eps(q)$ over the whole Brillouin zone of the reciprocal lattice. In the long-distance limit, where the lattice does not matter any more, we reproduce the usual flow equations of the continuum model. We show how the numerical solution of the flow equations can be simplified by expanding the dispersion in a finite number of circular harmonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا