ﻻ يوجد ملخص باللغة العربية
The possibility of measuring neutral-current coherent elastic neutrino-nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.
The presence of medium and external magnetic field change electromagnetic properties of neutrino. In this article the behavior of neutrino magnetic moment in electromagnetic field is considered. On the basis the Bargmann-Michel-Telegdi equation for t
The electromagnetic properties of neutrinos, which are either trivial or negligible in the context of the Standard Model, can probe new physics and have significant implications in astrophysics and cosmology. The current best direct limits on the neu
Neutrino magnetic moment ($ u$MM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the Xenon1T collaboration might indicate a $sim 2.2times10^{-11} mu_B$ effective neutrino magnetic
The electromagnetic properties of neutrinos have attracted considerable attention from researchers for many decades (see [1] for a review). However, until recently, there was no indication in favour of nonzero electromagnetic properties of neutrinos
The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyhasalmi mine, at a distance of 2300 km from CERN. The conventio