ﻻ يوجد ملخص باللغة العربية
We analyze two multi-chord stellar occultations by Pluto observed on July 18th, 2012 and May 4th, 2013, and monitored respectively from five and six sites. They provide a total of fifteen light-curves, twelve of them being used for a simultaneous fit that uses a unique temperature profile, assuming a clear (no-haze) and pure N_2 atmosphere, but allowing for a possible pressure variation between the two dates. We find a solution that fits satisfactorily (i.e. within the noise level) all the twelve light-curves, providing atmospheric constraints between ~1,190 km (pressure ~ 11 mubar) and ~ 1,450 km (pressure ~0.1 mubar) from Plutos center. Our main results are: (1) the best-fitting temperature profile shows a stratosphere with strong positive gradient between 1,190 km (at 36 K, 11 mubar) and r = 1,215 km (6.0 mubar), where a temperature maximum of 110 K is reached; above it is a mesosphere with negative thermal gradient of -0.2 K/km up to ~ 1,390 km (0.25 mubar), where, the mesosphere connects itself to a more isothermal upper branch around 81 K; (2) the pressure shows a small (6 %) but significant increase (6-sigma level) between the two dates; (3) without troposphere, Plutos radius is found to be R_P = 1,190 +/- 5km. Allowing for a troposphere, R_P is constrained to lie between 1,168 and 1,195 km; (4) the currently measured CO abundance is too small to explain the mesospheric negative thermal gradient. Cooling by HCN is possible, but only if this species is largely saturated; Alternative explanations like zonal winds or vertical compositional variations of the atmosphere are unable to explain the observed mesospheric trend.
Context. Plutos tenuous nitrogen (N2) atmosphere undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has been recently (July 2015) observed by the New Horizons spacecraft. Goals are (i) construct a well calibrated re
Context: Pluto possesses a thin atmosphere, primarily composed of nitrogen, in which the detection of methane has been reported. Aims: The goal is to constrain essential but so far unknown parameters of Plutos atmosphere such as the surface pressur
Haze in Plutos atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Plutos surface at
The Centaur (10199) Chariklo has the first rings system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow the determination of sizes and shapes with kilometre accuracy and obtain cha
Combining stellar occultation observations probing Plutos atmosphere from 1988 to 2013 and models of energy balance between Plutos surface and atmosphere, we conclude that Plutos atmosphere does not collapse at any point in its 248-year orbit. The oc