ترغب بنشر مسار تعليمي؟ اضغط هنا

The SLUGGS Survey: Globular cluster kinematics in a double sigma galaxy - NGC 4473

126   0   0.0 ( 0 )
 نشر من قبل Adebusola Alabi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 4473 is a so--called double sigma (2$sigma$) galaxy, i.e. a galaxy with rare, double peaks in its 2D stellar velocity dispersion. Here, we present the globular cluster (GC) kinematics in NGC 4473 out to $sim10,R_e$ (effective radii) using data from combined HST/ACS and Subaru/Suprime--Cam imaging and Keck/DEIMOS spectroscopy. We find that the 2$sigma$ nature of NGC 4473 persists up to 3 $R_e$, though it becomes misaligned to the photometric major axis. We also observe a significant offset between the stellar and GC rotation amplitudes. This offset can be understood as a co--addition of counter--rotating stars producing little net stellar rotation. We identify a sharp radial transition in the GC kinematics at $sim4,R_e$ suggesting a well defined kinematically distinct halo. In the inner region ($<4,R_e$), the blue GCs rotate along the photometric major axis, but in an opposite direction to the galaxy stars and red GCs. In the outer region ($>4,R_e$), the red GCs rotate in an opposite direction compared to the inner region red GCs, along the photometric major axis, while the blue GCs rotate along an axis intermediate between the major and minor photometric axes. We also find a kinematically distinct population of very red GCs in the inner region with elevated rotation amplitude and velocity dispersion. The multiple kinematic components in NGC 4473 highlight the complex formation and evolutionary history of this 2$sigma$ galaxy, as well as a distinct transition between the inner and outer components.



قيم البحث

اقرأ أيضاً

We present HST/ACS $g$ and $z$ photometry and half-light radii $R_{rm h}$ measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam $g$, $r$, and $i$ photometry of 421 additional can didates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a blue tilt in the blue GCs, wherein the blue GCs get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ~10% larger $R_{rm h}$ than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for M104, suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the $R_{rm h}$ measurements is large. We also identify 31 clusters more extended than typical GCs, which we consider ultra-compact dwarf (UCD) candidates. Many of these objects are fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed. To explore low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray - GC matches, 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.
This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South telescope, an additional 50 GC and Ultra Compac t Dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 Re sim30 kpc) from the centre of NGC 3923, and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within sim130. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/Lv = 8 to 26) at large galactocentric radii is required to explain these observations. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5% of the mass within 1 Re, 41.2% within 2 Re, and 75.6% within the radius of our last kinematic tracer at 6.9 Re. The total dynamical mass within this radius is found to be 1.5 x 10^12 solar masses. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.
We perform in-depth dynamical modelling of the luminous and dark matter (DM) content of the elliptical galaxy NGC 1407. Our strategy consists of solving the spherical Jeans equations for three independent dynamical tracers: stars, blue GCs and red GC s in a self-consistent manner. We adopt a maximum-likelihood Markov-Chain Monte Carlo fitting technique in the attempt to constrain the inner slope of the DM density profile (the cusp/core problem), and the stellar initial mass function (IMF) of the galaxy. We find the inner logarithmic slope of the DM density profiles to be $gamma = 0.6pm0.4$, which is consistent with either a DM cusp ($gamma = 1$) or with a DM core $(gamma = 0)$. Our findings are consistent with a Salpeter IMF, and marginally consistent with a Kroupa IMF. We infer tangential orbits for the blue GCs, and radial anisotropy for red GCs and stars. The modelling results are consistent with the virial mass--concentration relation predicted by $Lambda$CDM simulations. The virial mass of NGC 1407 is $log$ $M_{rm vir} = 13.3 pm 0.2 M_{odot}$, whereas the stellar mass is $log M_* = 11.8 pm 0.1 M_{odot}$. The overall uncertainties on the mass of NGC 1407 are only 5 per cent at the projected stellar effective radius. We attribute the disagreement between our results and previous X-ray results to the gas not being in hydrostatic equilibrium in the central regions of the galaxy. The halo of NGC 1407 is found be DM dominated, with a dynamical mass-to-light ratio of $M/L=260_{-100} ^{+174} M_{odot}/L_{odot, B}$. However, this value can be larger up to a factor of 3 depending on the assumed prior on the DM scale radius.
We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently-obtained HST/ACS mosaic, and new Subaru/Sup rime-Cam and archival CFHT/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/DEIMOS, Gemini/GMOS and MMT/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous datasets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC 4649 with galaxy formation models. We find that formation via a major merger between two gas-poor galaxies, followed by satellite accretion, can consistently reproduce the observations of NGC 4649 at different radii. We find no strong evidence to support an interaction between NGC 4649 and the neighbouring spiral galaxy NGC 4647. We identify interesting GC kinematic features in our data, such as counter-rotating subgroups and bumpy kinematic profiles, which encode more clues about the formation history of NGC 4649.
We study the mass and anisotropy distribution of the giant elliptical galaxy NGC 5846 using stars, as well as the red and blue globular cluster (GC) subpopulations. We break degeneracies in the dynamical models by taking advantage of the different ph ase space distributions of the two GC subpopulations to unambiguously constrain the mass of the galaxy and the anisotropy of the GC system. Red GCs show the same spatial distribution and behaviour as the starlight, whereas blue GCs have a shallower density profile, a larger velocity dispersion and a lower kurtosis, all of which suggest a different orbital distribution. We use a dispersion-kurtosis Jeans analysis and find that the solutions of separate analyses for the two GC subpopulations overlap in the halo parameter space. The solution converges on a massive dark matter halo, consistent with expectations from $Lambda$CDM and WMAP7 cosmology in terms of virial mass ($log M_{DM} sim13.3 M_{sun}$) and concentration ($c_{vir}sim8$). This is the first such analysis that solves the dynamics of the different GC subpopulations in a self-consistent manner. Our method improves the uncertainties on the halo parameter determination by a factor of two and opens new avenues for the use of elliptical galaxy dynamics as tests of predictions from cosmological simulations. The implied stellar mass-to-light ratio derived from the dynamical modelling is fully consistent with a Salpeter initial mass function (IMF) and rules out a bottom light IMF. The different GC subpopulations show markedly distinct orbital distributions at large radii, with red GCs having an anisotropy parameter $betasim0.4$ outside $sim3R_e$, and the blue GCs having $betasim0.15$ at the same radii, while centrally ($sim1R_e$) they are both isotropic. We discuss the implications of our findings within the two-phase formation scenario for early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا