ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of PSR J1357-6429 at 2.1 GHz with the Australia Telescope Compact Array

151   0   0.0 ( 0 )
 نشر من قبل Andrey Danilenko
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PSR J1357$-$6429 is a young and energetic radio pulsar detected in X-rays and $gamma$-rays. It powers a compact pulsar wind nebula with a jet visible in X-rays and a large scale plerion detected in X-ray and TeV ranges. Previous multiwavelength studies suggested that the pulsar has a significant proper motion of about 180 mas yr$^{-1}$ implying an extremely high transverse velocity of about 2000 km s$^{-1}$. In order to verify that, we performed radio-interferometric observations of PSR J1357$-$6429 with the the Australia Telescope Compact Array (ATCA) in the 2.1 GHz band. We detected the pulsar with a mean flux density of $212pm5$ $mu$Jy and obtained the most accurate pulsar position, RA = 13:57:02.525(14) and Dec = $-$64:29:29.89(15). Using the new and archival ATCA data, we did not find any proper motion and estimated its 90 per cent upper limit $mu < 106$ mas yr$^{-1}$. The pulsar shows a highly polarised single pulse, as it was earlier observed at 1.4 GHz. Spectral analysis revealed a shallow spectral index $alpha_{ u}$ = $0.5 pm 0.1$. Based on our new radio position of the pulsar, we disclaim its optical counterpart candidate reported before.



قيم البحث

اقرأ أيضاً

We report results of the first phase of observations with the Australia Telescope Compact Array (ATCA) at 5 and 9 GHz of the fields around 411 gamma-ray sources with declinations < +10 deg detected by Fermi but marked as unassociated in the 2FGL cata logue. We have detected 424 sources with flux densities in a range of 2 mJy to 6 Jy that lie within the 99 per cent localisation uncertainty of 283 gamma-ray sources. Of these, 146 objects were detected in both the 5 and 9 GHz bands. We found 84 sources in our sample with a spectral index flatter than -0.5. The majority of detected sources are weaker than 100 mJy and for this reason were not found in previous surveys. Approximately 1/3 of our sample, 128 objects, have the probability of being associated by more than 10 times than the probability of being a background source found in the vicinity of a gamma-ray object by chance. We present the catalogue of positions of these sources, estimates of their flux densities and spectral indices where available.
The supermassive black hole, Sagittarius A* (Sgr A*), at the centre of the Milky Way undergoes regular flaring activity which is thought to arise from the innermost region of the accretion flow. We performed the monitoring observations of the Galacti c Centre to study the flux-density variations at 3mm using the Australia Telescope Compact Array (ATCA) between 2010 and 2014. We obtain the light curves of Sgr A* by subtracting the contributions from the extended emission around it, and the elevation and time dependent gains of the telescope. We perform structure function analysis and the Bayesian blocks representation to detect flare events. The observations detect six instances of significant variability in the flux density of Sgr A* in three observations, with variations between 0.5 to 1.0 Jy, which last for 1.5 $-$ 3 hours. We use the adiabatically expanding plasmon model to explain the short time-scale variations in the flux density. We derive the physical quantities of the modelled flare emission, such as the source expansion speed $v_{mathrm{exp}}$, source sizes, spectral indices, and the turnover frequency. These parameters imply that the expanding source components are either confined to the immediate vicinity of Sgr A* by contributing to the corona or the disc, or have a bulk motion greater than $v_{mathrm{exp}}$. No exceptional flux density variation on short flare time-scales was observed during the approach and the flyby of the dusty S-cluster object (DSO/G2). This is consistent with its compactness and the absence of a large bow shock.
127 - David I. Jones 2010
We present images of the Sagittarius (Sgr) B giant molecular cloud at 2368 and 1384 MHz obtained using new, multi-configuration Australia Telescope Compact Array (ATCA) observations. We have combined these observations with archival single-dish obser vations yielding images at resolutions of 47 by 14 and 27 by 8 at 1384 and 2368 MHz respectively. These observations were motivated by our theoretical work (Protheroe et al. 2008) indicating the possibility that synchrotron emission from secondary electrons and positrons created in hadronic cosmic ray (CR) collisions with the ambient matter of the Sgr B2 cloud could provide a detectable (and possibly linearly polarized) non-thermal radio signal. We find that the only detectable non-thermal emission from the Sgr B region is from a strong source to the south of Sgr B2, which we label Sgr B2 Southern Complex (SC). We find Sgr B2(SC) integrated flux densities of 1.2+/-0.2 Jy at 1384 MHz and 0.7+/-0.1 Jy at 2368 MHz for a source of FWHM size at 1384 MHz of ~54. Despite its non-thermal nature, the synchrotron emission from this source is unlikely to be dominantly due to secondary electrons and positrons. We use polarization data to place 5-sigma upper limits on the level of polarized intensity from the Sgr B2 cloud of 3.5 and 3 mJy/beam at 1384 and 2368 MHz respectively. We also use the angular distribution of the total intensity of archival 330 MHz VLA and the total intensity and polarized emission of our new 1384 MHz and 2368 MHz data to constrain the diffusion coefficient for transport of the parent hadronic CRs into the dense core of Sgr B2 to be no larger than about 1% of that in the Galactic disk. Finally, we have also used the data to perform a spectral and morphological study of the features of the Sgr B cloud and compare and contrast these to previous studies.
110 - Warwick E. Wilson 2011
Here we describe the Compact Array Broadband Backend (CABB) and present first results obtained with the upgraded Australia Telescope Compact Array (ATCA). The 16-fold increase in observing bandwidth, from 2 x 128 MHz to 2 x 2048 MHz, high bit samplin g, and addition of 16 zoom windows (each divided into a further 2048 channels) provide major improvements for all ATCA observations. The benefits of the new system are: (1) hugely increased radio continuum and polarization sensitivity as well as image fidelity, (2) substantially improved capability to search for and map emission and absorption lines over large velocity ranges, (3) simultaneous multi-line and continuum observations, (4) increased sensitivity, survey speed and dynamic range due to high-bit sampling, and (5) high velocity resolution, while maintaining full polarization output. The new CABB system encourages all observers to make use of both spectral line and continuum data to achieve their full potential. Given the dramatic increase of the ATCA capabilities in all bands (ranging from 1.1 to 105 GHz) CABB enables scientific projects that were not feasible before the upgrade, such as simultaneous observations of multiple spectral lines, on-the-fly mapping, fast follow-up of radio transients (e.g., the radio afterglow of new supernovae) and maser observations at high velocity resolution and full polarization. The first science results presented here include wide-band spectra, high dynamic-range images, and polarization measurements, highlighting the increased capability and discovery potential of the ATCA.
We have carried out observations of the newly-discovered magnetar in the direction of Sagittarius A* using the Australia Telescope Compact Array in four frequency bands from 4.5 to 20 GHz. Radio pulsations are clearly detected at all frequencies. We measure the pulsars dispersion measure to be 1650 +/- 50 pc/cm^3, the highest of any of the known pulsars. Once Faraday rotation has been taken into account, the pulse profile is more than 80% linearly polarized at all frequencies and has a small degree (5%) of circular polarization. The rotation measure of -67000 +/- 500$ rad/m^2 is the largest (in magnitude) ever measured for a pulsar but still a factor 8 smaller than Sgr A* itself. The combination of the dispersion and rotation measures implies an integrated magnetic field strength of -50uG along the line of sight. The flux density appears to have increased by about a factor of two between observations made 30 days apart. This object therefore joins the small class of radio emitting magnetars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا