ﻻ يوجد ملخص باللغة العربية
We calculate the partition function of the $q$-state Potts model on arbitrary-length cyclic ladder graphs of the square and triangular lattices, with a generalized external magnetic field that favors or disfavors a subset of spin values ${1,...,s}$ with $s le q$. For the case of antiferromagnet spin-spin coupling, these provide exactly solved models that exhibit an onset of frustration and competing interactions in the context of a novel type of tensor-product $S_s otimes S_{q-s}$ global symmetry, where $S_s$ is the permutation group on $s$ objects.
We determine the general structure of the partition function of the $q$-state Potts model in an external magnetic field, $Z(G,q,v,w)$ for arbitrary $q$, temperature variable $v$, and magnetic field variable $w$, on cyclic, Mobius, and free strip grap
We calculate zeros of the $q$-state Potts model partition function on $m$th-iterate Sierpinski graphs, $S_m$, in the variable $q$ and in a temperature-like variable, $y$. We infer some asymptotic properties of the loci of zeros in the limit $m to inf
We study the metastable equilibrium properties of the Potts model with heat-bath transition rates using a novel expansion. The method is especially powerful for large number of state spin variables and it is notably accurate in a rather wide range of temperatures around the phase transition.
We demonstrate that the occurrence of symmetry breaking phase transitions together with the emergence of a local order parameter in classical statistical physics is a consequence of the geometrical structure of probability space. To this end we inves
Fortuin-Kastelyn clusters in the critical $Q$-state Potts model are conformally invariant fractals. We obtain simulation results for the fractal dimension of the complete and external (accessible) hulls for Q=1, 2, 3, and 4, on clusters that wrap aro