ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing

59   0   0.0 ( 0 )
 نشر من قبل Cuong Ton-That
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray absorption near-edge spectroscopy (XANES), photoluminescence, cathodoluminescence and Raman spectroscopy have been used to investigate the chemical states of nitrogen dopants in ZnO nanowires. It is found that nitrogen exists in multiple states: NO, NZn and loosely bound N2 molecule. The work establishes a direct link between a donor-acceptor pair (DAP) emission at 3.232 eV and the concentration of loosely bound N2. These results confirm that N2 at Zn site is a potential candidate for producing a shallow acceptor state in N-doped ZnO as theoretically predicted by Lambrecht and Boonchun [Phys. Rev. B 87, 195207 (2013)]. Additionally, shallow acceptor states arising from NO complexes have been ruled out in this study.

قيم البحث

اقرأ أيضاً

The advancement of quantum optical science and technology with solid-state emitters such as nitrogen-vacancy (NV) centers in diamond critically relies on the coherence of the emitters optical transitions. A widely employed strategy to create NV cente rs at precisely controlled locations is nitrogen ion implantation followed by a high-temperature annealing process. We report on experimental data directly correlating the NV center optical coherence to the origin of the nitrogen atom. These studies reveal low-strain, narrow-optical-linewidth ($<500$ MHz) NV centers formed from naturally-occurring $^{14}$N atoms. In contrast, NV centers formed from implanted $^{15}$N atoms exhibit significantly broadened optical transitions ($>1$ GHz) and higher strain. The data show that the poor optical coherence of the NV centers formed from implanted nitrogen is not due to an intrinsic effect related to the diamond or isotope. These results have immediate implications for the positioning accuracy of current NV center creation protocols and point to the need to further investigate the influence of lattice damage on the coherence of NV centers from implanted ions.
Here we report the fabrication of stable, shallow (< 5 nm) nitrogen-vacancy (NV) centers in diamond by nitrogen delta doping at the last stage of the chemical vapor deposition (CVD) growth process. The NVs are stabilized after treating the diamond in $SF_6$ plasma, otherwise the color centers are not observed, suggesting a strong influence from the surface. X-Ray photoelectron spectroscopy measurements show the presence of only fluorine atoms on the surface, in contrast to previous studies, and suggests very good surface coverage. We managed to detect hydrogen nuclear magnetic resonance signal from protons in the immersion oil, revealing a depth of the NVs of about 5 nm
109 - Gul Rahman 2015
Density functional theory with local spin density approximation has been used to propose possible room temperature ferromagnetism in N-doped NaCl-type BaO. Pristine BaO is a wide bandgap semiconductor, however, N induces a large density of states at the Fermi level in the nonmagnetic state, which suggests magnetic instability within the Stoner mean field model. The spin-polarized calculations show that N-doped BaO is a true half- metal, where N has a large magnetic moment, which is mainly localized around the N atoms and a small polarization at the O sites is also observed. The origin of magnetism is linked to the electronic structure. The ferromagnetic(FM) and antiferromagnetic (AFM) coupling between the N atoms in BaO reveal that doping N atoms have a FM ground state, and the calculated transition temperature ($T_{C}$), within the Heisenberg mean field theory, theorizes possible room temperature FM in N-doped BaO. Nitrogen also induces ferromagnetism when doping occurs at surface O site and has a smaller defect formation energy than the bulk N-doped BaO. The magnetism of N-doped BaO is also compared with Co-doped BaO, and we believe that N has a greater potential for tuning magnetism in BaO than Co.
A significant advance toward achieving practical applications of graphene as a two-dimensional material in nanoelectronics would be provided by successful synthesis of both n-type and p-type doped graphene. However reliable doping and a thorough unde rstanding of carrier transport in the presence of charged impurities governed by ionized donors or acceptors in the graphene lattice are still lacking. Here we report experimental realization of few-layer nitrogen-doped (N-doped) graphene sheets by chemical vapor deposition of organic molecule 1, 3, 5-triazine on Cu metal catalyst. By reducing the growth temperature, the atomic percentage of nitrogen doping is raised from 2.1 % to 5.6 %. With increasing doping concentration, N-doped graphene sheet exhibits a crossover from p-type to n-type behavior accompanied by a strong enhancement of electron-hole transport asymmetry, manifesting the influence of incorporated nitrogen impurities. In addition, by analyzing the data of X-ray photoelectron spectroscopy, Raman spectroscopy, and electrical measurements, we show that pyridinic and pyrrolic N impurities play an important role in determining the transport behavior of carriers in N-doped graphene sheets.
The nitrogen-vacancy (NV) centre in diamond is a unique optical defect that is used in many applications today and methods to enhance its fluorescence brightness are highly sought after. We observed experimentally an enhancement of the NV quantum yie ld by up to 7% in bulk diamond caused by an external magnetic field relative to the field-free case. This observation is rationalised phenomenologically in terms of a magnetic field dependence of the NV excited state triplet-to-singlet transition rate. The theoretical model is in good qualitative agreement with the experimental results at low excitation intensities. Our results significantly contribute to our fundamental understanding of the photophysical properties of the NV defect in diamond and may enable novel NV centre-based magnetometry techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا