ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange scattering as the driving force for ultrafast all-optical and bias-controlled reversal in ferrimagnetic metallic structures

34   0   0.0 ( 0 )
 نشر من قبل Alexandra Kalashnikova
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimentally observed ultrafast all-optical magnetization reversal in ferrimagnetic metals and heterostructures based on antiferromagnetically coupled ferromagnetic $d-$ and $f-$metallic layers relies on intricate energy and angular momentum flow between electrons, phonons and spins. Here we treat the problem of angular momentum transfer in the course of ultrafast laser-induced dynamics in a ferrimagnetic metallic system using microscopical approach based on the system of rate equations. We show that the magnetization reversal is supported by a coupling of $d-$ and $f-$ subsystems to delocalized $s-$ or $p-$ electrons. The latter can transfer spin between the two subsystems in an incoherent way owing to the $(s;p)-(d;f)$ exchange scattering. Since the effect of the external excitation in this process is reduced to the transient heating of the mobile electron subsystem, we also discuss possibility to trigger the magnetization reversal by applying a voltage bias pulse to antiferromagnetically coupled metallic ferromagnetic layers embedded in point contact or tunneling structures. We argue that such devices allow controlling reversal with high accuracy. We also suggest to use the anomalous Hall effect to register the reversal, thus playing a role of reading probes.

قيم البحث

اقرأ أيضاً

The discovery of materials with improved functionality can be accelerated by rational material design. Heusler compounds with tunable magnetic sublattices allow to implement this concept to achieve novel magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant exchange bias (EB) of more than 3 T and a similarly large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. We demonstrate the applicability of our design concept on a second material, Mn-Fe-Ga, with a magnetic transition above room temperature, exemplifying the universality of the concept and the feasibility of room-temperature applications. Our study points to a new direction for novel magneto-electronic devices. At the same time it suggests a new route for realizing rare-earth free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.
We demonstrate the magnetization reversal features in NiFe/IrMn/NiFe thin-film structures with 40% and 75% relative content of Ni in Permalloy in the temperature range from 80 K to 300 K. At the descending branches of the hysteresis loops, the magnet ization reversal sequence of the two ferromagnetic layers is found to depend on the type of NiFe alloy. In the samples with 75% relative content of Ni, the bottom ferromagnetic layer reverses prior to the top one. On the contrary, in the samples with 40% of Ni, the top ferromagnetic layer reverses prior to the bottom one. These tendencies of magnetization reversal are preserved in the entire range of temperatures. These distinctions can be explained by the morphological and structural differences of interfaces in the samples based on two types of Permalloy.
We present a microscopic calculation of magnetization damping for a magnetic toy model. The magnetic system consists of itinerant carriers coupled antiferromagnetically to a dispersionless band of localized spins, and the magnetization damping is due to coupling of the itinerant carriers to a phonon bath in the presence of spin-orbit coupling. Using a mean-field approximation for the kinetic exchange model and assuming the spin-orbit coupling to be of the Rashba form, we derive Boltzmann scattering integrals for the distributions and spin coherences in the case of an antiferromagnetic exchange splitting, including a careful analysis of the connection between lifetime broadening and the magnetic gap. For the Elliott-Yafet type itinerant spin dynamics we extract dephasing and magnetization times T_1 and T_2 from initial conditions corresponding to a tilt of the magnetization vector, and draw a comparison to phenomenological equations such as the Landau-Lifshitz or the Gilbert damping. We also analyze magnetization precession and damping for this system including an anisotropy field and find a carrier mediated dephasing of the localized spin via the mean-field coupling.
Electrical current manipulation of magnetization switching through spin-orbital coupling in ferromagnetic semiconductor (Ga,Mn)As Hall bar devices has been investigated. The efficiency of the current-controlled magnetization switching is found to be sensitive to the orientation of the current with respect to the crystalline axes. The dependence of the spin-orbit effective magnetic field on the direction and magnitude of the current is determined from the shifts in the magnetization switching angle. We find that the strain induced effective magnetic field is about three times as large as the Rashba induced magnetic field in our GaMnAs devices.
101 - M. Patra , M. Thakur , S. Majumdar 2008
We report the new results of exchange bias effect in Nd_{1-x}Sr_{x}CoO_3 for x = 0.20 and 0.40, where the exchange bias phenomenon is involved with the ferrimagnetic (FI) state in a spontaneously phase separated system. The zero-field cooled magnetiz ation exhibits the FI (T_{FI}) and ferromagnetic (T_C) transitions at ~ 23 and sim 70 K, respectively for x = 0.20. The negative horizontal and positive vertical shifts of the magnetic hysteresis loops are observed when the system is cooled through T_{FI} in presence of a positive static magnetic field. Training effect is observed for x = 0.20, which could be interpreted by a spin configurational relaxation model. The unidirectional shifts of the hysteresis loops as a function of temperature exhibit the absence of exchange bias above T_{FI} for x = 0.20. The analysis of the cooling field dependence of exchange bias field and magnetization indicates that the ferromagnetic (FM) clusters consist of single magnetic domain with average size around sim 20 and ~ 40 AA ~ for x = 0.20 and 0.40, respectively. The sizes of the FM clusters are close to the percolation threshold for x = 0.20, which grow and coalesce to form the bigger size for x = 0.40 resulting in a weak exchange bias effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا